View allAll Photos Tagged mosasaur

Design/Artist: Jules Buck Jones

Invisible and Absolute is a sculpture of an extinct sea lizard called a Mosasaur

The green coils and I hope I have this right

Nimbus Cloud

Artist/Designer: Dharmesh Patel, Associate AIA

Nimbus Cloud resembles a rain cloud and is a reflection on the vitality of Waller Creek and the nature that surrounds it.

The green ghost you see was someone walking through the frame..;) I tried to get one without people walking into and out of the frame but I got tired of standing there with my finger on the button..;)

Since classical antiquity, Maastricht's Sint-Pietersberg has been noted for its high-quality lime- or marlstone. Its mines are famous, too, for the first discovery there in the late eighteenth century of a fossilised Mosasaur, a huge marine reptile which lived in or near the Meuse River 70 million years ago. Before that - say, between 130 to 80 million years ago - Bees had developed. Perhaps among them were forebears of our Halictus scabiose which lusts after Centaurea scabiosa, also a denizen of limestone and lime-rich soil. Both this Bee and Wildflower are relatively rare but can be found on this Mount if you watch for them.

آخر رسوماتي

 

صراع من اجل البقاء

شريعة الغاب موجوده حتى في اعماق البحار

  

My Last Shetch

Fight for Life

 

There are several places at Monument Rocks in western Kansas where the soft chalk formations can be seen. The ultimate fate of this exposed chalk is clear to see here. Monument Rocks is listed as one of the eight wonders of Kansas. It is not easy to fully appreciate all the wonders in my state, since two of them are below ground level: www.kansassampler.org/8wonders/

 

The chalk was deposited during the Cretaceous Period of geologic history, about 80 million years ago, when the central interior of the U.S. was covered by a seaway. The several hundred feet deep water contained single-celled animals that drifted to the sea floor for eons, creating a mucky ooze. This material was perfect for trapping and preserving the remains of animals that lived in that ocean, such as fish, turtles, sharks, swimming reptiles called mosasaurs and plesiosaurs, swimming birds, gliding reptiles called pterosaurs, as well as invertebrate animals such as giant clams. Today the chalk beds routinely give up these fossils. Probably the best-known fossil from these beds is the famous "fish-within-a-fish" on display at the Sternberg Museum in Hays.

 

Source and more info: www.kansassampler.org/8wonders/8wondersofkansas-view.php?...

 

He's only about 5 inches long ;-)

Plésiosaure et Mosasaure, prédateurs marins

 

Les plésiosaures avaient un corps large et plat et une queue courte. Leurs membres s'étaient transformés en quatre longues nageoires, alimentées par de puissants muscles attachés à de larges plaques osseuses formées par la ceinture scapulaire et le bassin. Les plésiosaures respiraient de l'air et portaient des petits vivants, des indices suggèrent qu'ils étaient à sang chaud.

 

Mesurant entre 3 et 15 m de long, les mosasaures sillonnaient toutes les mers du Crétacé supérieur, entre - 100 et - 66 millions d'années. Mosasaurus hoffmanni est le plus grand de tous et l’un des derniers connus, avant la grande extinction de la fin du Crétacé. C'étaient des lézards géants et non des dinosaures.

 

" Les maitres des rivières et des mers"

LE BAL DES DINOSAURES (lanternes chinoises)

Jardin d'Acclimatation (Bois de Boulogne)

en.wikipedia.org/wiki/Moeraki_Boulders

 

“The Moeraki Boulders are unusually large spherical boulders lying along a stretch of Koekohe Beach on the wave-cut Otago coast of New Zealand between Moeraki and Hampden. They occur scattered either as isolated or clusters of boulders within a stretch of beach where they have been protected in a scientific reserve. These boulders are grey-coloured septarian concretions, which have been exhumed from the mudstone and bedrock enclosing them and concentrated on the beach by coastal erosion. Especially in recent years, the boulders have been a popular tourist attraction.

 

The most striking aspect of the boulders is their unusually large size and spherical shape, with a distinct bimodal size distribution. Approximately one-third of the boulders range in size from about 0.5 to 1.0 metre in diameter, the other two-thirds from 1.5 to 2.2 metres. Most are spherical or almost spherical, but a small proportion are slightly elongated parallel to the bedding plane of the mudstone that once enclosed them.

 

Neither the spherical to subspherical shape or large size of the Moeraki Boulders is unique to them. Virtually identical spherical boulders, called Koutu Boulders, are found on the beaches, in the cliffs, and beneath the surface inland of the shore of Hokianga Harbour, North Island, New Zealand, between Koutu and Kauwhare points. Like the Moeraki Boulders, the Koutu Boulders are large, reaching 3 metres in diameter, and almost spherical. Similar boulder-size concretions, known as Katiki Boulders, are also found on the north-facing shore of Shag Point some 19 kilometres south of where the Moeraki Boulders are found. These concretions occur as both spherical cannonball concretions and flat, disk-shaped or oval concretions. Unlike the Moeraki boulders, some of these concretions contain the bones of mosasaurs and plesiosaurs.”

When you get to the backlot at Kino Sports Complex, you see a lot of unusual stuff.

Tucson Convention Center is indoors; the exhibits are nicely curated. It is mostly retail type sales. In contrast, the Kino is mostly outside on the parking lots and fields at the complex There are some very large tents, about the size of a football field and some smaller 10x10 and 20x10 tents. Many of the gems, minerals, and displays are brought in by forklift on pallets. In the tents, the specimens are in large rectangular plastic containers. At TCC the vendors are retail and many of the gems sell by the gram. At Kino the vendors are retail and wholesale. Gems and minerals are sold by the pound or by the piece.

 

These are ammonite fossils.

simple.wikipedia.org/wiki/Ammonite

Ammonites[1] were marine cephalopod molluscs of the subclass Ammonoidea.[2]

Their widely-known fossils show a ribbed spiral-form shell, in the end compartment of which lived the tentacled animal. These creatures lived in the seas from at least 400 to 65 million years ago. They became extinct at the K/T extinction event. Their nearest living relatives are the octopus, squid, cuttlefish and Nautilus.

Nine orders are recognised in the Ammonoidea: five in the Palaeozoic and four in the Mesozoic.

 

Ammonites began life as tiny planktonic creatures less than 1mm in diameter. In their infancy they would have been vulnerable to attack from other predators, including mosasaurs and fish. However, their shell gave their soft parts some protection. The existence of sexual dimorphism, with larger females and smaller males, has been much discussed.[3]p244 The matter is still open, but at least in some species deposits are found with two sizes and no intermediates.

 

As the shell grew, the back compartments were sealed with a semi-permeable membrane. A single tube, the siphuncle, passed through the centre of each septum and connected the chambers The animal could add or withdraw gas as it needed for buoyancy. On the inside of the shell, the compartments are marked by elaborate sutures. These can be seen easily on those fossils which are internal moulds, as most are.[3]p241 Ammonites were active predators, and they themselves were often eaten by fish and marine reptiles. The fossils are almost always found with the outer compartment broken off, probably as a result of just such an attack.

 

Ammonites swam by jet propulsion, as do most other cepalopods. Water would have come into the mantle cavity, passed over the gills, and was squirted out. Nautilus also has an escape mechanism, where a contraction of the branchial (gill) chamber causes the animal to jump out of the way of a predator.[3]p232 It would be reasonable to suppose that ammonites had a similar mechanism.

 

www.visittucson.org/tucson-gem-mineral-fossil-showcase/

Every year the world-renowned Tucson Gem, Mineral & Fossil Showcase is like a time portal, a trip around the world, and a treasure hunt all rolled into one. Every winter, more than 65,000 guests from around the globe descend upon Tucson, AZ, to buy, sell, trade, and bear witness to rare and enchanting gems, minerals, and fossils at more than 50 gem show locations across the city. If you're planning a winter visit to Tucson, you won't want to miss this three-week-long event filled with shows, related events, a free day at the gem & mineral museum, and much, much more!

"Whether you’re looking for a $5 shimmering crystal necklace or a show-stopping $200,000 crystallized rock from an exotic location, the Tucson Gem, Mineral, & Fossil Shows have something for everyone.

 

www.visittucson.org/blog/post/gems-and-minerals/

www.tgms.org/show

hallo guys!

a new model to my prehistoric series =)

the model represents a five to six feet long sea bird from the cretaceous. it maybe seems huge, but it lived in the most dangerous sea of the history of this planet. you can easily imagine why, there were 12 feet long sea turtles that had the width of 8 to 9 feet, and 60 feet long mosasaurs at the time. and don't forget it could face a t-rex on the land.

the real animal had teeth in the jaws, but i decided not to do it on the model, because less is more sometimes.

hesperornis was adapted to the life in water so much, it didn't only loose the ability to fly, but also stand/walk on the land. because it had to leave water to lay eggs and take care of the new generation, it had no other choice than to crawl like a sea turtle, so you can easily imagine how exhausting it had to be for the animal, also making it an easy target.

you might wonder why it has blue legs, so i'll give you the answer:

the color scheme was inspired by the blue-footed booby and the flightless cormorant :-)

it comes from a border grafted bird base.

----------------------------------------------------------------------------------------------------------

paper: origami/tissue sandwich; 20 by 20 cm

model: 13 cm long

Les plésiosaures avaient un corps large et plat et une queue courte. Leurs membres s'étaient transformés en quatre longues nageoires, alimentées par de puissants muscles attachés à de larges plaques osseuses formées par la ceinture scapulaire et le bassin. Les palmes faisaient un mouvement de vol dans l'eau. Les plésiosaures respiraient de l'air et portaient des petits vivants ; des indices suggèrent qu'ils étaient à sang chaud.

 

Mesurant entre 3 et 15 m de long, les mosasaures sillonnaient toutes les mers du Crétacé supérieur, entre - 100 et - 66 millions d'années. Mosasaurus hoffmanni est le plus grand de tous et l’un des derniers connus, avant la grande extinction de la fin du Crétacé. C'étaient des lézards géants et non des dinosaures.

 

" Les maitres des rivières et des mers"

LE BAL DES DINOSAURES (lanternes chinoises)

Jardin d'Acclimatation (Bois de Boulogne)

When you get to the backlot at Kino Sports Complex, you see a lot of unusual stuff.

Tucson Convention Center is indoors; the exhibits are nicely curated. It is mostly retail type sales. In contrast, the Kino is mostly outside on the parking lots and fields at the complex There are some very large tents, about the size of a football field and some smaller 10x10 and 20x10 tents. Many of the gems, minerals, and displays are brought in by forklift on pallets. In the tents, the specimens are in large rectangular plastic containers. At TCC the vendors are retail and many of the gems sell by the gram. At Kino the vendors are retail and wholesale. Gems and minerals are sold by the pound or by the piece.

 

This is an ammonite fossil.

simple.wikipedia.org/wiki/Ammonite

Ammonites[1] were marine cephalopod molluscs of the subclass Ammonoidea.[2]

Their widely-known fossils show a ribbed spiral-form shell, in the end compartment of which lived the tentacled animal. These creatures lived in the seas from at least 400 to 65 million years ago. They became extinct at the K/T extinction event. Their nearest living relatives are the octopus, squid, cuttlefish and Nautilus.

Nine orders are recognised in the Ammonoidea: five in the Palaeozoic and four in the Mesozoic.

 

Ammonites began life as tiny planktonic creatures less than 1mm in diameter. In their infancy they would have been vulnerable to attack from other predators, including mosasaurs and fish. However, their shell gave their soft parts some protection. The existence of sexual dimorphism, with larger females and smaller males, has been much discussed.[3]p244 The matter is still open, but at least in some species deposits are found with two sizes and no intermediates.

 

As the shell grew, the back compartments were sealed with a semi-permeable membrane. A single tube, the siphuncle, passed through the centre of each septum and connected the chambers The animal could add or withdraw gas as it

Drivers on Kansas highways see mostly vast expanses of flat wheatfields. But a few miles east of highway 83 between Scott City and Oakley, the underlying layers are explosed at Monument Rocks.

 

These carbonate chalk monuments are eroded remnants from a stratum that is prized for fossils of mosasaurs, marine reptiles from the time of dinosaurs. Some specimens can be seen in the Fick Museum in Oakley to the north, but mosasaur fossils from this area are found in natural history museums all over the world.

 

Beneath the arch here at Monument Rocks many swallows have built their nests.

a fossile tooth of the Mosasaur (Ichthyo saures), I bought it at a mineral fare! Thought is is special to have something so old!.

 

© This photo is the property of Helga Bruchmann. Please do not use my photos for sharing, printing or for any other purpose without my written permission. Thank you!

The Moeraki Boulders are unusually large spherical boulders lying along a stretch of Koekohe Beach on the wave-cut Otago coast of New Zealand between Moeraki and Hampden. They occur scattered either as isolated or clusters of boulders within a stretch of beach where they have been protected in a scientific reserve. These boulders are grey-colored septarian concretions, which have been exhumed from the mudstone and bedrock enclosing them and concentrated on the beach by coastal erosion. Especially in recent years, the boulders have been a popular tourist attraction.

The most striking aspect of the boulders is their unusually large size and spherical shape, with a distinct bimodal size distribution. Approximately one-third of the boulders range in size from about 0.5 to 1.0 metre in diameter, the other two-thirds from 1.5 to 2.2 metres. Most are spherical or almost spherical, but a small proportion are slightly elongated parallel to the bedding plane of the mudstone that once enclosed them.

Neither the spherical to subspherical shape or large size of the Moeraki Boulders is unique to them. Virtually identical spherical boulders, called Koutu Boulders, are found on the beaches, in the cliffs, and beneath the surface inland of the shore of Hokianga Harbour, North Island, New Zealand, between Koutu and Kauwhare points. Like the Moeraki Boulders, the Koutu Boulders are large, reaching 3 metres in diameter, and almost spherical. Similar boulder-size concretions, known as Katiki Boulders, are also found on the north-facing shore of Shag Point some 19 kilometres south of where the Moeraki Boulders are found. These concretions occur as both spherical cannonball concretions and flat, disk-shaped or oval concretions. Unlike the Moeraki boulders, some of these concretions contain the bones of mosasaurs and plesiosaurs.

Similar large spherical concretions have been found in many other countries.

Detailed analysis of the fine-grained rock using optical mineralogy, X-ray crystallography, and electron microprobe has determined that the boulders consist of mud, fine silt and clay, cemented by calcite. The degree of cementation varies from being relatively weak in the interior of a boulder to quite hard at its outside rim. The outside rims of the larger boulders consist of as much as 10 to 20% calcite because the calcite not only tightly cements the silt and clay but has also replaced it to a significant degree.

The rock comprising the bulk of a boulder is riddled with large cracks called septaria that radiate outward from a hollow core lined with scalenohedral calcite crystals. The process or processes that created septaria within Moeraki Boulders, and in other septarian concretions, remain an unresolved matter for which a number of possible explanations have been proposed. These cracks radiate and thin outward from the centre of the typical boulder and are typically filled with an outer (early stage) layer of brown calcite and an inner (late stage) layer of yellow calcite spar, which often, but not always, completely fills the cracks. Rare Moeraki Boulders have a very thin innermost (latest stage) layer of dolomite and quartz covering the yellow calcite spar.

The composition of the Moeraki Boulders and the septaria that they contain are typical of, often virtually identical to, septarian concretions that have been found in exposures of sedimentary rocks in New Zealand and elsewhere. Smaller but otherwise very similar septarian concretions are found within exposures of sedimentary rocks elsewhere in New Zealand. Similar septarian concretions have been found in the Kimmeridge Clay and Oxford Clay of England, and at many other locations worldwide.

When you get to the backlot at Kino Sports Complex, you see a lot of unusual stuff.

Tucson Convention Center is indoors; the exhibits are nicely curated. It is mostly retail type sales. In contrast, the Kino is mostly outside on the parking lots and fields at the complex There are some very large tents, about the size of a football field and some smaller 10x10 and 20x10 tents. Many of the gems, minerals, and displays are brought in by forklift on pallets. In the tents, the specimens are in large rectangular plastic containers. At TCC the vendors are retail and many of the gems sell by the gram. At Kino the vendors are retail and wholesale. Gems and minerals are sold by the pound or by the piece.

 

This is an ammonite fossil.

simple.wikipedia.org/wiki/Ammonite

Ammonites[1] were marine cephalopod molluscs of the subclass Ammonoidea.[2]

Their widely-known fossils show a ribbed spiral-form shell, in the end compartment of which lived the tentacled animal. These creatures lived in the seas from at least 400 to 65 million years ago. They became extinct at the K/T extinction event. Their nearest living relatives are the octopus, squid, cuttlefish and Nautilus.

Nine orders are recognised in the Ammonoidea: five in the Palaeozoic and four in the Mesozoic.

 

Ammonites began life as tiny planktonic creatures less than 1mm in diameter. In their infancy they would have been vulnerable to attack from other predators, including mosasaurs and fish. However, their shell gave their soft parts some protection. The existence of sexual dimorphism, with larger females and smaller males, has been much discussed.[3]p244 The matter is still open, but at least in some species deposits are found with two sizes and no intermediates.

 

As the shell grew, the back compartments were sealed with a semi-permeable membrane. A single tube, the siphuncle, passed through the centre of each septum and connected the chambers The animal could add or withdraw gas as it needed for buoyancy. On the inside of the shell, the compartments are marked by elaborate sutures. These can be seen easily on those fossils which are internal moulds, as most are.[3]p241 Ammonites were active predators, and they themselves were often eaten by fish and marine reptiles. The fossils are almost always found with the outer compartment broken off, probably as a result of just such an attack.

 

Ammonites swam by jet propulsion, as do most other cepalopods. Water would have come into the mantle cavity, passed over the gills, and was squirted out. Nautilus also has an escape mechanism, where a contraction of the branchial (gill) chamber causes the animal to jump out of the way of a predator.[3]p232 It would be reasonable to suppose that ammonites had a similar mechanism.

 

www.visittucson.org/tucson-gem-mineral-fossil-showcase/

Every year the world-renowned Tucson Gem, Mineral & Fossil Showcase is like a time portal, a trip around the world, and a treasure hunt all rolled into one. Every winter, more than 65,000 guests from around the globe descend upon Tucson, AZ, to buy, sell, trade, and bear witness to rare and enchanting gems, minerals, and fossils at more than 50 gem show locations across the city. If you're planning a winter visit to Tucson, you won't want to miss this three-week-long event filled with shows, related events, a free day at the gem & mineral museum, and much, much more!

"Whether you’re looking for a $5 shimmering crystal necklace or a show-stopping $200,000 crystallized rock from an exotic location, the Tucson Gem, Mineral, & Fossil Shows have something for everyone.

 

www.visittucson.org/blog/post/gems-and-minerals/

www.tgms.org/show

La Terre des dinosaures n'était pas celle que nous connaissons. Au Jurassique, un unique continent, la Pangée, commençait à se fracturer en deux blocs, séparés par l'océan Thétys. Le niveau des mers était plus élevé qu'aujourd'hui et elles étaient densément peuplées. Des poissons, petits et grands, dont des proches de nos requins y nageaient, des crustacés, des méduses, une abondance de micro-organismes. Il n'y avait encore à l'époque de mammifères marins mais de grands reptiles marins tels les plésiosaures, les mosasaures et les ichtyosaures, lointains cousins des crocodiles, qui, piscivores ou amateurs de plancton, avaient de quoi festoyer.

 

Festival des Lanternes : "le Bal des Dinosaures"

Jardin d'Acclimatation, Bois de Boulogne

These rocks stick out like a fortress in otherwise flat plains. They are an outcrop of fossil-bearing strata that exist under the wheatfields and ranches in western Kansas. Fossils of giant mosasaurs and other marine creatures have been found here. Some are displayed in the Fick Fossil Museum north of here in Oakley.

 

The Monument Rocks are on private land but are accessible during daytime hours.

The Moeraki Boulders are unusually large spherical boulders lying along a stretch of Koekohe Beach on the wave-cut Otago coast of New Zealand between Moeraki and Hampden. They occur scattered either as isolated or clusters of boulders within a stretch of beach where they have been protected in a scientific reserve. These boulders are grey-colored septarian concretions, which have been exhumed from the mudstone and bedrock enclosing them and concentrated on the beach by coastal erosion. Especially in recent years, the boulders have been a popular tourist attraction.

The most striking aspect of the boulders is their unusually large size and spherical shape, with a distinct bimodal size distribution. Approximately one-third of the boulders range in size from about 0.5 to 1.0 metre (1.6 to 3.3 ft) in diameter, the other two-thirds from 1.5 to 2.2 metres (4.9 to 7.2 ft). Most are spherical or almost spherical, but a small proportion are slightly elongated parallel to the bedding plane of the mudstone that once enclosed them.

Neither the spherical to subspherical shape or large size of the Moeraki Boulders is unique to them. Virtually identical spherical boulders, called Koutu Boulders, are found on the beaches, in the cliffs, and beneath the surface inland of the shore of Hokianga Harbour, North Island, New Zealand, between Koutu and Kauwhare points. Like the Moeraki Boulders, the Koutu Boulders are large, reaching 3 metres (10 ft) in diameter, and almost spherical. Similar boulder-size concretions, known as Katiki Boulders, are also found on the north-facing shore of Shag Point some 19 kilometres (12 mi) south of where the Moeraki Boulders are found. These concretions occur as both spherical cannonball concretions and flat, disk-shaped or oval concretions. Unlike the Moeraki boulders, some of these concretions contain the bones of mosasaurs and plesiosaurs.

Similar large spherical concretions have been found in many other countries.

Detailed analysis of the fine-grained rock using optical mineralogy, X-ray crystallography, and electron microprobe has determined that the boulders consist of mud, fine silt and clay, cemented by calcite. The degree of cementation varies from being relatively weak in the interior of a boulder to quite hard at its outside rim. The outside rims of the larger boulders consist of as much as 10 to 20% calcite because the calcite not only tightly cements the silt and clay but has also replaced it to a significant degree.

The rock comprising the bulk of a boulder is riddled with large cracks called septaria that radiate outward from a hollow core lined with scalenohedral calcite crystals. The process or processes that created septaria within Moeraki Boulders, and in other septarian concretions, remain an unresolved matter for which a number of possible explanations have been proposed. These cracks radiate and thin outward from the centre of the typical boulder and are typically filled with an outer (early stage) layer of brown calcite and an inner (late stage) layer of yellow calcite spar, which often, but not always, completely fills the cracks. Rare Moeraki Boulders have a very thin innermost (latest stage) layer of dolomite and quartz covering the yellow calcite spar.

The composition of the Moeraki Boulders and the septaria that they contain are typical of, often virtually identical to, septarian concretions that have been found in exposures of sedimentary rocks in New Zealand and elsewhere. Smaller but otherwise very similar septarian concretions are found within exposures of sedimentary rocks elsewhere in New Zealand. Similar septarian concretions have been found in the Kimmeridge Clay and Oxford Clay of England, and at many other locations worldwide.

The Moeraki Boulders are concretions created by the cementation of the Paleocene mudstone of the Moeraki Formation, from which they have been exhumed by coastal erosion. The main body of the boulders started forming in what was then marine mud, near the surface of the Paleocene sea floor. This is demonstrated by studies of their composition; specifically the magnesium and iron content, and stable isotopes of oxygen and carbon. Their spherical shape indicates that the source of calcium was mass diffusion, as opposed to fluid flow. The larger boulders, 2 metres (6.6 ft) in diameter, are estimated to have taken 4 to 5.5 million years to grow while 10 to 50 metres (33 to 164 ft) of marine mud accumulated on the seafloor above them. After the concretions formed, large cracks known as septaria formed in them. Brown calcite, yellow calcite, and small amounts of dolomite and quartz progressively filled these cracks when a drop in sea level allowed fresh groundwater to flow through the mudstone enclosing them.

Local Māori legends explained the boulders as the remains of eel baskets, calabashes, and kumara washed ashore from the wreck of Arai-te-uru, a large sailing canoe. This legend tells of the rocky shoals that extend seaward from Shag Point as being the petrified hull of this wreck and a nearby rocky promontory as being the body of the canoe's captain. Their reticulated patterning on the boulders, according to this legend, are the remains of the canoe's fishing nets.

In 1848, Walter Mantell sketched the beach and its boulders, more numerous than now. The picture is now in the Alexander Turnbull Library in Wellington

"During the Triassic Period, 225 million years ago, a group of reptiles called ichthyosaurs swam in warm shallow seas. They were predators, eating fish, squid and ammonites, coming up to the surface to breathe. . . The ichthyosaur shown here is the state fossil of Nevada. . . It swam in the shallow seas of central Nevada, which at the time was on the edge of North America. It is the second largest ichthyosaur known, about 48 feet long."

 

Exhibit at the Nevada State Museum in Las Vegas.

 

[Note: The large aquatic dinosaur that leaped into the air and snapped up a great white shark with ease in the movie "Jurassic World" is a mosasaur. Ichthyosaurs from the Triassic Period could grow even larger.]

The county road goes through the formations. What has been post prior to this photo are on the west side of the road.

______________________

Monument Rocks and Castle Rock are an 8 Wonder of Kansas as a duo entry because of the scientifically significant fossils these ancient chalk beds have produced and because they have been highly eroded into unusual spires and shapes, making them spectacular landmarks on the plains of western Kansas!

 

On the western edge of Gove County is Monument Rocks, a series of large, heavily sculpted chalk monoliths that are sometimes referred to as the Chalk Pyramids. The site has been designated as a National Natural Landmark. In eastern Gove County is Castle Rock, a chalk spire that stands by itself in the valley of Hackberry Creek, though immediately south of Castle Rock is an extensive outcrop of chalk, capped by the younger Ogallala Formation.

 

The chalk was deposited during the Cretaceous Period of geologic history, about 80 million years ago, when the central interior of the U.S. was covered by a seaway. The several hundred feet deep water contained single-celled animals that drifted to the sea floor for eons, creating a mucky ooze. This material was perfect for trapping and preserving the remains of animals that lived in that ocean, such as fish, turtles, sharks, swimming reptiles called mosasaurs and plesiosaurs, swimming birds, gliding reptiles called pterosaurs, as well as invertebrate animals such as giant clams. Today the chalk beds routinely give up these fossils. Probably the best-known fossil from these beds is the famous "fish-within-a-fish" on display at the Sternberg Museum in Hays.

 

Both places are on private property but the landowners are amenable to visitors and no special permission is required. Please be respectful!

 

Almost 3 ft. in diameter, this amazing.Ammonite thrived in the age of the Dinosaurs and examples have been found with Mosasaur teeth embedded deep into the shell. Ammonites disappeared along the the Dinosaurs 65 million years ago, but their first cousins, Nautiloids (chambered nautilus) did survive and can be seen in a few major Aquariums like one in Monterey.

A striking geologic formation contact from Fresno canyon in Big Bend Ranch state park. The bright white limestones of the Buda formation (bottom) contrasts with the flaggy bright yellow marls and thin-bedded limestones of the Boquillas formation (top). There is an approximate 2 million year gap, or unconformity, between the two units. The rocks here are Creteaceous in age, and are about 97 million years old.

 

The Boquillas marked another transgressive phase of the Cretaceous inland sea, which ran from the Gulf of Mexico, over the continent, and up to Alaska. Amongst the many well-known fossils in the formation are Mosasaurs, a giant carnivorous lizard and apex predator of the inland seaway.

Quinn tells the valued guests of the Bigg Family Blythe Natural History Museum about the fossil of the ammonite that swam the seas 66 million years ago and now hangs around her neck in the form of a beautiful piece of jewelry.

 

Quinn: This origami depiction, folded by Mrs Bigg, looks cute but the live cephalopods that swam the oceans could seem menacing to the crustaceans, bivalves, fish and plankton. They ranged in size from a few millimetres to 3 metres long. There is evidence of mosasaurs and ichthyosaurs having eaten them, and some fish would likely also have considered them prey. Behind you on the screen is a video animation of what the real octopus-like mollusc might have looked like.

 

www.youtube.com/watch?v=3P92PMZMrjM

 

The jewelry in the museum gift shop was sourced near Madagascar and comes in a variety of sizes fitting the thickest human necks down to the most petite among you. The sediment that replaced the silt and other living material inside the chambered shell has hardened over the millennia into beautiful sparkling geology, sliced with laser saws and mounted in sterling silver after being polished to a beautiful sheen. There is a nice selection of gift jewelry and many other items to take home as a souvenir of your visit today.

 

Editorial note: The information and video is from the London Natural History Museum website. The necklace was purchased online and made lovely gifts to a couple of my relatives. And, no, in spite of her enthusiasm, Quinn is not getting a commission from any sales.

Hand or fin? There's even a thumb. This really big mitt is a cast of the front flipper of mosasaur Platecarpus found in Cretaceous marine rocks near Morden, Manitoba.

flic.kr/p/89cov1

 

Mosasurs were top predators of their time, giant aquatic lizards

up to 15 m long that are closely related to modern monitor

lizards such as the Komodo Dragon... which turns the mosasaur

into a Cretaceous Water Dragon.

 

McGill University's Redpath Museum in Montreal, Quebec is geotagged.

Released: 01.20.23

 

Bandcamp:

avirtualmemory.bandcamp.com/album/item-10-the-necropolis-...

 

Soundcloud:

soundcloud.com/avirtualmemoryofficial/sets/item-10-the-ne...

 

More artwork at: www.permiandesigns.com/

 

Instagram: www.instagram.com/permiandesigns/

Bluesky: bsky.app/profile/permiandesigns.bsky.social

 

NOTE: All works featured here are completely original creations. None are made with the assistance of any form of AI technology in any fashion whatsoever.

On this land, you'll find a sight that has almost vanished from America — bison roaming a shortgrass prairie as they did hundreds of years ago. But Smoky Valley Ranch is more than prairie. Dramatic chalk bluffs overlook large expanses of grassland, rocky ravines and Smoky Hill River. Breaks along the upper reaches of the river represent a transition zone between mixed grass and shortgrass prairie environments.

 

Size

 

16,800 acres

 

Location

 

Logan County, Kansas

 

Why the Conservancy Selected this Site

 

This area is a rare remnant of shortgrass prairie and home to the green toad, a state-threatened amphibian, and the swift fox. In addition to its biological significance, it is a living repository of geological, paleontological, archaeological, historical and cultural history.

 

Pre-Historic History

 

The chalk badlands along the Smoky Hill River contain a rich fossil record of animals that lived in a vast inland sea that covered Kansas during the Cretaceous Period, some 80 million years ago. The Cretaceous Period was part of the Age of Reptiles, an era famous for its dinosaurs. Although dinosaurs were restricted to landmasses far from western Kansas, their marine representatives — mosasaurs and plesiosaurs — roamed the seas. Besides these large marine reptiles, huge turtles, sharks, flying reptiles, giant clams, and toothed-birds inhabited the area. Because fossil remains are so well-preserved and scientifically significant, the chalk badlands are among the world's most famous locations for fossils from this era.

 

A Paleoindian site, the first physical evidence that humans inhabited North America at the end of the last Ice Age, was unearthed on Smoky Valley Ranch in 1895. This discovery contradicted contemporary theory and was not confirmed until 13 years later when a similar discovery was made in Folsom, New Mexico.

 

Modern History

 

Since man first visited this area, the banks of the Smoky Hill River have served as an east-west highway. Mounted Arapahos and Cheyenne, Charles Fremont, Kit Carson, Wild Bill Hickok, the 7th Calvary of George Custer and the 10th Calvary (buffalo soldiers) rode the Smoky Hill Trail many times through Smoky Valley Ranch in the late 1860s. The Butterfield Overland Dispatch stage line passed through and stopped at a way station located on the ranch to change horses and drivers. Beginning in the late 1800s, a number of African-American settlers — nearly a hundred families — settled on and around the ranch. Two brothers from a nearby black settlement quarried the stone and built the current ranch headquarters in the early 1900s.

 

What the Conservancy is Doing

 

The Smoky Valley Ranch preserve will be a working model and catalyst for shortgrass prairie conservation. To achieve this goal, The Nature Conservancy works in partnership with private landowners and other conservation groups.

 

Visiting the Preserve

 

Hiking trails are open year round. Prairie vistas and chalk bluffs greet hikers as they wind their way around the two trail loops. The first loop is one-mile hike, the second loop is five mile hike. Please see below for directions to ranch and trail map and instructions. Because of the rough terrain, boots are recommended. Any items brought in like water bottles or food wrappers must be taken out.

 

What to See:

 

During a nice hike there is a possibility of running into some of Kansas' most fascinating animals The include: prairie chickens, pronghorn, ferruginous hawks, burrowing owls, golden eagles, green toad, swift fox, and the most recent resident - the federally endangered black-footed ferret.

 

Fee/Rules

 

There is no fee to hike the trail loops. We ask that you respect the rules of the trails by not bringing pets, bicycles, or other vehicles. There is no camping at the ranch. Also, please do not remove any keepsakes from the trails.

 

From Oakley, take US-40 west to the western edge of Monument, Kansas. Turn south on 350th Road for approximately 15 miles to reach the hiking trail. There is parking and a kiosk on the east side of the road. Trails are self-guided.

 

The Moeraki Boulders are unusually large and spherical boulders lying along a stretch of Koekohe Beach on the wave-cut Otago coast of New Zealand between Moeraki and Hampden. They occur scattered either as isolated or clusters of boulders within a stretch of beach where they have been protected in a scientific reserve. The erosion by wave action of mudstone, comprising local bedrock and landslides, frequently exposes embedded isolated boulders. These boulders are grey-colored septarian concretions, which have been exhumed from the mudstone enclosing them and concentrated on the beach by coastal erosion.[1][2][3][4]

 

Local Māori legends explained the boulders as the remains of eel baskets, calabashes, and kumara washed ashore from the wreck of Arai-te-uru, a large sailing canoe. This legend tells of the rocky shoals that extend seaward from Shag Point as being the petrified hull of this wreck and a nearby rocky promontory as being the body of the canoe's captain. In 1848 W.B.D. Mantell sketched the beach and its boulders, more numerous than now. The picture is now in the Alexander Turnbull Library in Wellington.[5] The boulders were described in 1850 colonial reports and numerous popular articles since that time. In more recent times they have become a popular tourist attraction, often described and pictured in web pages and tourist guides.[3][5][6]

  

A cluster of highly spherical boulders

The most striking aspect of the boulders is their unusually large size and spherical shape, with a distinct bimodal size distribution. Approximately one-third of the boulders range in size from about 0.5 to 1.0 metre (1.6 to 3.3 ft) in diameter, the other two-thirds from 1.5 to 2.2 metres (4.9 to 7.2 ft). Most are spherical or almost spherical, but a small proportion are slightly elongated parallel to the bedding plane of the mudstone that once enclosed them.[1][3][4]

 

Neither the spherical to subspherical shape or large size of the Moeraki Boulders is unique to them. Virtually identical spherical boulders, called Koutu Boulders, are found on the beaches, in the cliffs, and beneath the surface inland of the shore of Hokianga Harbour, North Island, New Zealand, between Koutu and Kauwhare points. Like the Moeraki Boulders, the Koutu Boulders are large, reaching 3 metres (10 ft) in diameter, and almost spherical.

 

Similar boulder-size concretions, known as Katiki Boulders, are also found on the north-facing shore of Shag Point some 19 kilometres (12 mi) south of where the Moeraki Boulders are found. These concretions occur as both spherical cannonball concretions and flat, disk-shaped or oval concretions. Unlike the Moeraki boulders, some of these concretions contain the bones of mosasaurs and plesiosaurs.[3]

 

Large spherical concretions similar in size and shape to the Moeraki Boulders have been found in other countries.

1 tờ vuông không cắt, kỹ thuật boxpleating 22x22

1 uncut square, boxpleating 22x22 gribs

 

gấp bằng giấy dó

folded with dó paper ( Vietnamese handmade paper)

 

ALBUM OUT NOW /// Released 01.20.23

 

Bandcamp:

avirtualmemory.bandcamp.com/album/item-10-the-necropolis-...

 

Soundcloud:

soundcloud.com/avirtualmemoryofficial/sets/item-10-the-ne...

 

More artwork at: www.permiandesigns.com/

 

Instagram: www.instagram.com/permiandesigns/

Bluesky: bsky.app/profile/permiandesigns.bsky.social

 

NOTE: All works featured here are completely original creations. None are made with the assistance of any form of AI technology in any fashion whatsoever.

Scale: 1:30 - 1:35

Producer: PNSO

Sculptor: Zhao Chuang or someone in his workshop

Released: 2021

Turonian - Maastrichtian

Commentary and additional photos: dinotoyblog.com/forum/index.php?topic=3390.msg313233#msg3...

James and Louise Temerty Galleries of the Age of Dinosaurs

 

Mosasaur

Designed and folded by Tran Trung Hieu (C) July 2011.

 

TRAIL OF THE DINOSAURS 2011

 

From 1 uncut square paper, with 22.5 degree. A full close model from top to belly with teeth.

 

More pics here:

 

forum.origami.vn/showthread.php?384-Tr%E1%BA%A7n-Trung-Hi...

Recovered from a phosphate mine in western Morocco, probably near Khouribga. I bought two of these at the Tucson show around 20 years ago. If someone knows the species, please post a note! US 5c. coin for scale. Mine might be a juvenile M. beaugei (?).

 

Teeth are in good condition and bone less so, as is usual for specimens from here, Teeth curve back towards the gullet, to hold the prey, and the teeth interlace on the full jaw.

The Moeraki Boulders are unusually large and spherical boulders lying along a stretch of Koekohe Beach on the wave-cut Otago coast of New Zealand between Moeraki and Hampden. They occur scattered either as isolated or clusters of boulders within a stretch of beach where they have been protected in a scientific reserve. The erosion by wave action of mudstone, comprising local bedrock and landslides, frequently exposes embedded isolated boulders. These boulders are grey-colored septarian concretions, which have been exhumed from the mudstone enclosing them and concentrated on the beach by coastal erosion.

  

Local Māori legends explained the boulders as the remains of eel baskets, calabashes, and kumara washed ashore from the wreck of Arai-te-uru, a large sailing canoe. This legend tells of the rocky shoals that extend seaward from Shag Point as being the petrified hull of this wreck and a nearby rocky promontory as being the body of the canoe's captain. In 1848 W.B.D. Mantell sketched the beach and its boulders, more numerous than now. The picture is now in the Alexander Turnbull Library in Wellington.[5] The boulders were described in 1850 colonial reports and numerous popular articles since that time. In more recent times they have become a popular tourist attraction, often described and pictured in web pages and tourist guides.

  

A cluster of highly spherical boulders

The most striking aspect of the boulders is their unusually large size and spherical shape, with a distinct bimodal size distribution. Approximately one-third of the boulders range in size from about 0.5 to 1.0 metre (1.6 to 3.3 ft) in diameter, the other two-thirds from 1.5 to 2.2 metres (4.9 to 7.2 ft). Most are spherical or almost spherical, but a small proportion are slightly elongated parallel to the bedding plane of the mudstone that once enclosed them.

  

Neither the spherical to subspherical shape or large size of the Moeraki Boulders is unique to them. Virtually identical spherical boulders, called Koutu Boulders, are found on the beaches, in the cliffs, and beneath the surface inland of the shore of Hokianga Harbour, North Island, New Zealand, between Koutu and Kauwhare points. Like the Moeraki Boulders, the Koutu Boulders are large, reaching 3 metres (10 ft) in diameter, and almost spherical.

  

Similar boulder-size concretions, known as Katiki Boulders, are also found on the north-facing shore of Shag Point some 19 kilometres (12 mi) south of where the Moeraki Boulders are found. These concretions occur as both spherical cannonball concretions and flat, disk-shaped or oval concretions. Unlike the Moeraki boulders, some of these concretions contain the bones of mosasaurs and plesiosaurs.

  

Large spherical concretions similar in size and shape to the Moeraki Boulders have been found in other countries. ~Wikipedia

My first Lego custom Jurassic world dinosaur.This is my favorite Dinosaur from Jurassic world and I hope you guys like this pic and favorite this and my next customs are the infinity stones and kingpin.

Mosasaur fossil hanging from the ceiling of the paleontology hall of the Houston Museum of Natural Science

Snakes are elongated, limbless, carnivorous reptiles of the suborder Serpentes Like all other squamates, snakes are ectothermic, amniote vertebrates covered in overlapping scales. Many species of snakes have skulls with several more joints than their lizard ancestors, enabling them to swallow prey much larger than their heads (cranial kinesis). To accommodate their narrow bodies, snakes' paired organs (such as kidneys) appear one in front of the other instead of side by side, and most have only one functional lung. Some species retain a pelvic girdle with a pair of vestigial claws on either side of the cloaca. Lizards have independently evolved elongate bodies without limbs or with greatly reduced limbs at least twenty-five times via convergent evolution, leading to many lineages of legless lizards. These resemble snakes, but several common groups of legless lizards have eyelids and external ears, which snakes lack, although this rule is not universal (see Amphisbaenia, Dibamidae, and Pygopodidae).

 

Living snakes are found on every continent except Antarctica, and on most smaller land masses; exceptions include some large islands, such as Ireland, Iceland, Greenland, the Hawaiian archipelago, and the islands of New Zealand, as well as many small islands of the Atlantic and central Pacific oceans. Additionally, sea snakes are widespread throughout the Indian and Pacific oceans. Around thirty families are currently recognized, comprising about 520 genera and about 3,900 species. They range in size from the tiny, 10.4 cm-long (4.1 in) Barbados threadsnake to the reticulated python of 6.95 meters (22.8 ft) in length. The fossil species Titanoboa cerrejonensis was 12.8 meters (42 ft) long. Snakes are thought to have evolved from either burrowing or aquatic lizards, perhaps during the Jurassic period, with the earliest known fossils dating to between 143 and 167 Ma ago. The diversity of modern snakes appeared during the Paleocene epoch (c. 66 to 56 Ma ago, after the Cretaceous–Paleogene extinction event). The oldest preserved descriptions of snakes can be found in the Brooklyn Papyrus.

 

Most species of snake are nonvenomous and those that have venom use it primarily to kill and subdue prey rather than for self-defense. Some possess venom that is potent enough to cause painful injury or death to humans. Nonvenomous snakes either swallow prey alive or kill by constriction.

 

Etymology

The English word snake comes from Old English snaca, itself from Proto-Germanic *snak-an- (cf. Germanic Schnake 'ring snake', Swedish snok 'grass snake'), from Proto-Indo-European root *(s)nēg-o- 'to crawl to creep', which also gave sneak as well as Sanskrit nāgá 'snake'. The word ousted adder, as adder went on to narrow in meaning, though in Old English næddre was the general word for snake. The other term, serpent, is from French, ultimately from Indo-European *serp- 'to creep', which also gave Ancient Greek ἕρπω (hérpō) 'I crawl' and Sanskrit sarpá ‘snake’.

 

The fossil record of snakes is relatively poor because snake skeletons are typically small and fragile making fossilization uncommon. Fossils readily identifiable as snakes (though often retaining hind limbs) first appear in the fossil record during the Cretaceous period. The earliest known true snake fossils (members of the crown group Serpentes) come from the marine simoliophiids, the oldest of which is the Late Cretaceous (Cenomanian age) Haasiophis terrasanctus from the West Bank, dated to between 112 and 94 million years old.

 

Based on comparative anatomy, there is consensus that snakes descended from lizards. Pythons and boas—primitive groups among modern snakes—have vestigial hind limbs: tiny, clawed digits known as anal spurs, which are used to grasp during mating The families Leptotyphlopidae and Typhlopidae also possess remnants of the pelvic girdle, appearing as horny projections when visible.

 

Front limbs are nonexistent in all known snakes. This is caused by the evolution of their Hox genes, controlling limb morphogenesis. The axial skeleton of the snakes' common ancestor, like most other tetrapods, had regional specializations consisting of cervical (neck), thoracic (chest), lumbar (lower back), sacral (pelvic), and caudal (tail) vertebrae. Early in snake evolution, the Hox gene expression in the axial skeleton responsible for the development of the thorax became dominant. As a result, the vertebrae anterior to the hindlimb buds (when present) all have the same thoracic-like identity (except from the atlas, axis, and 1–3 neck vertebrae). In other words, most of a snake's skeleton is an extremely extended thorax. Ribs are found exclusively on the thoracic vertebrae. Neck, lumbar and pelvic vertebrae are very reduced in number (only 2–10 lumbar and pelvic vertebrae are present), while only a short tail remains of the caudal vertebrae. However, the tail is still long enough to be of important use in many species, and is modified in some aquatic and tree-dwelling species.

 

Many modern snake groups originated during the Paleocene, alongside the adaptive radiation of mammals following the extinction of (non-avian) dinosaurs. The expansion of grasslands in North America also led to an explosive radiation among snakes. Previously, snakes were a minor component of the North American fauna, but during the Miocene, the number of species and their prevalence increased dramatically with the first appearances of vipers and elapids in North America and the significant diversification of Colubridae (including the origin of many modern genera such as Nerodia, Lampropeltis, Pituophis, and Pantherophis).

 

Fossils

There is fossil evidence to suggest that snakes may have evolved from burrowing lizards, during the Cretaceous Period. An early fossil snake relative, Najash rionegrina, was a two-legged burrowing animal with a sacrum, and was fully terrestrial. One extant analog of these putative ancestors is the earless monitor Lanthanotus of Borneo (though it also is semiaquatic). Subterranean species evolved bodies streamlined for burrowing, and eventually lost their limbs. According to this hypothesis, features such as the transparent, fused eyelids (brille) and loss of external ears evolved to cope with fossorial difficulties, such as scratched corneas and dirt in the ears. Some primitive snakes are known to have possessed hindlimbs, but their pelvic bones lacked a direct connection to the vertebrae. These include fossil species like Haasiophis, Pachyrhachis and Eupodophis, which are slightly older than Najash.

 

This hypothesis was strengthened in 2015 by the discovery of a 113-million-year-old fossil of a four-legged snake in Brazil that has been named Tetrapodophis amplectus. It has many snake-like features, is adapted for burrowing and its stomach indicates that it was preying on other animals. It is currently uncertain if Tetrapodophis is a snake or another species, in the squamate order, as a snake-like body has independently evolved at least 26 times. Tetrapodophis does not have distinctive snake features in its spine and skull. A study in 2021 places the animal in a group of extinct marine lizards from the Cretaceous period known as dolichosaurs and not directly related to snakes.

 

An alternative hypothesis, based on morphology, suggests the ancestors of snakes were related to mosasaurs—extinct aquatic reptiles from the Cretaceous—forming the clade Pythonomorpha. According to this hypothesis, the fused, transparent eyelids of snakes are thought to have evolved to combat marine conditions (corneal water loss through osmosis), and the external ears were lost through disuse in an aquatic environment. This ultimately led to an animal similar to today's sea snakes. In the Late Cretaceous, snakes recolonized land, and continued to diversify into today's snakes. Fossilized snake remains are known from early Late Cretaceous marine sediments, which is consistent with this hypothesis; particularly so, as they are older than the terrestrial Najash rionegrina. Similar skull structure, reduced or absent limbs, and other anatomical features found in both mosasaurs and snakes lead to a positive cladistical correlation, although some of these features are shared with varanids.

 

Genetic studies in recent years have indicated snakes are not as closely related to monitor lizards as was once believed—and therefore not to mosasaurs, the proposed ancestor in the aquatic scenario of their evolution. However, more evidence links mosasaurs to snakes than to varanids. Fragmented remains found from the Jurassic and Early Cretaceous indicate deeper fossil records for these groups, which may potentially refute either hypothesis.

 

Genetic basis of snake evolution

Main article: Limb development

Both fossils and phylogenetic studies demonstrate that snakes evolved from lizards, hence the question became which genetic changes led to limb loss in the snake ancestor. Limb loss is actually very common in extant reptiles and has happened dozens of times within skinks, anguids, and other lizards.

 

In 2016, two studies reported that limb loss in snakes is associated with DNA mutations in the Zone of Polarizing Activity Regulatory Sequence (ZRS), a regulatory region of the sonic hedgehog gene which is critically required for limb development. More advanced snakes have no remnants of limbs, but basal snakes such as pythons and boas do have traces of highly reduced, vestigial hind limbs. Python embryos even have fully developed hind limb buds, but their later development is stopped by the DNA mutations in the ZRS.

 

Distribution

There are about 3,900 species of snakes, ranging as far northward as the Arctic Circle in Scandinavia and southward through Australia. Snakes can be found on every continent except Antarctica, as well as in the sea, and as high as 16,000 feet (4,900 m) in the Himalayan Mountains of Asia. There are numerous islands from which snakes are absent, such as Ireland, Iceland, and New Zealand (although New Zealand's northern waters are infrequently visited by the yellow-bellied sea snake and the banded sea krait).

 

Taxonomy

All modern snakes are grouped within the suborder Serpentes in Linnean taxonomy, part of the order Squamata, though their precise placement within squamates remains controversial.

 

The two infraorders of Serpentes are Alethinophidia and Scolecophidia. This separation is based on morphological characteristics and mitochondrial DNA sequence similarity. Alethinophidia is sometimes split into Henophidia and Caenophidia, with the latter consisting of "colubroid" snakes (colubrids, vipers, elapids, hydrophiids, and atractaspids) and acrochordids, while the other alethinophidian families comprise Henophidia. While not extant today, the Madtsoiidae, a family of giant, primitive, python-like snakes, was around until 50,000 years ago in Australia, represented by genera such as Wonambi.

 

There are numerous debates in the systematics within the group. For instance, many sources classify Boidae and Pythonidae as one family, while some keep the Elapidae and Hydrophiidae (sea snakes) separate for practical reasons despite their extremely close relation.

 

Recent molecular studies support the monophyly of the clades of modern snakes, scolecophidians, typhlopids + anomalepidids, alethinophidians, core alethinophidians, uropeltids (Cylindrophis, Anomochilus, uropeltines), macrostomatans, booids, boids, pythonids and caenophidians.

 

Legless lizards

Main article: Legless lizard

While snakes are limbless reptiles, evolved from (and grouped with) lizards, there are many other species of lizards that have lost their limbs independently but which superficially look similar to snakes. These include the slowworm and glass snake.

 

Other serpentine tetrapods that are unrelated to snakes include caecilians (amphibians), amphisbaenians (near-lizard squamates), and the extinct aistopods (amphibians).

 

Biology

The now extinct Titanoboa cerrejonensis was 12.8 m (42 ft) in length. By comparison, the largest extant snakes are the reticulated python, measuring about 6.95 m (22.8 ft) long, and the green anaconda, which measures about 5.21 m (17.1 ft) long and is considered the heaviest snake on Earth at 97.5 kg (215 lb).

 

At the other end of the scale, the smallest extant snake is Leptotyphlops carlae, with a length of about 10.4 cm (4.1 in). Most snakes are fairly small animals, approximately 1 m (3.3 ft) in length.

 

Perception

Pit vipers, pythons, and some boas have infrared-sensitive receptors in deep grooves on the snout, allowing them to "see" the radiated heat of warm-blooded prey. In pit vipers, the grooves are located between the nostril and the eye in a large "pit" on each side of the head. Other infrared-sensitive snakes have multiple, smaller labial pits lining the upper lip, just below the nostrils.

 

A snake tracks its prey using smell, collecting airborne particles with its forked tongue, then passing them to the vomeronasal organ or Jacobson's organ in the mouth for examination. The fork in the tongue provides a sort of directional sense of smell and taste simultaneously. The snake's tongue is constantly in motion, sampling particles from the air, ground, and water, analyzing the chemicals found, and determining the presence of prey or predators in the local environment. In water-dwelling snakes, such as the anaconda, the tongue functions efficiently underwater.

 

The underside of a snake is very sensitive to vibration, allowing the snake to detect approaching animals by sensing faint vibrations in the ground. Despite the lack of outer ears, they are also able to detect airborne sounds.

 

Snake vision varies greatly between species. Some have keen eyesight and others are only able to distinguish light from dark, but the important trend is that a snake's visual perception is adequate enough to track movements. Generally, vision is best in tree-dwelling snakes and weakest in burrowing snakes. Some have binocular vision, where both eyes are capable of focusing on the same point, an example of this being the Asian vine snake. Most snakes focus by moving the lens back and forth in relation to the retina. Diurnal snakes have round pupils and many nocturnal snakes have slit pupils. Most species possess three visual pigments and are probably able to see two primary colors in daylight. The annulated sea snake and the genus Helicops appears to have regained much of their color vision as an adaption to the marine environment they live in. It has been concluded that the last common ancestors of all snakes had UV-sensitive vision, but most snakes that depend on their eyesight to hunt in daylight have evolved lenses that act like sunglasses for filtering out the UV-light, which probably also sharpens their vision by improving the contrast.

 

Skin

The skin of a snake is covered in scales. Contrary to the popular notion of snakes being slimy (because of possible confusion of snakes with worms), snakeskin has a smooth, dry texture. Most snakes use specialized belly scales to travel, allowing them to grip surfaces. The body scales may be smooth, keeled, or granular. The eyelids of a snake are transparent "spectacle" scales, also known as brille, which remain permanently closed.

 

The shedding of scales is called ecdysis (or in normal usage, molting or sloughing). Snakes shed the complete outer layer of skin in one piece. Snake scales are not discrete, but extensions of the epidermis—hence they are not shed separately but as a complete outer layer during each molt, akin to a sock being turned inside out.

 

Snakes have a wide diversity of skin coloration patterns which are often related to behavior, such as the tendency to have to flee from predators. Snakes that are at a high risk of predation tend to be plain, or have longitudinal stripes, providing few reference points to predators, thus allowing the snake to escape without being noticed. Plain snakes usually adopt active hunting strategies, as their pattern allows them to send little information to prey about motion. Blotched snakes usually use ambush-based strategies, likely because it helps them blend into an environment with irregularly shaped objects, like sticks or rocks. Spotted patterning can similarly help snakes to blend into their environment.

 

The shape and number of scales on the head, back, and belly are often characteristic and used for taxonomic purposes. Scales are named mainly according to their positions on the body. In "advanced" (Caenophidian) snakes, the broad belly scales and rows of dorsal scales correspond to the vertebrae, allowing these to be counted without the need for dissection.

 

Molting

Molting (or "ecdysis") serves a number of purposes. It allows old, worn skin to be replaced and it can remove parasites such as mites and ticks that live in the skin. It has also been observed in snakes that molting can be synced to mating cycles. Shedding skin can release pheromones and revitalize color and patterns of the skin to increase attraction of mates. Renewal of the skin by molting supposedly allows growth in some animals such as insects, but this has been disputed in the case of snakes.

 

Molting occurs periodically throughout the life of a snake. Before each molt, the snake stops eating and often hides or moves to a safe place. Just before shedding, the skin becomes dull and dry looking and the snake's eyes turn cloudy or blue-colored. The inner surface of the old skin liquefies, causing it to separate from the new skin beneath it. After a few days, the eyes become clear and the snake "crawls" out of its old skin, which splits close to the snake's mouth. The snake rubs its body against rough surfaces to aid in the shedding of its old skin. In many cases, the cast skin peels backward over the body from head to tail in one piece, like pulling a sock off inside-out, revealing a new, larger, brighter layer of skin which has formed underneath.

 

A young snake that is still growing may shed its skin up to four times a year, but an older snake may shed only once or twice a year. The discarded skin carries a perfect imprint of the scale pattern, so it is usually possible to identify the snake from the cast skin if it is reasonably intact. This periodic renewal has led to the snake being a symbol of healing and medicine, as pictured in the Rod of Asclepius.

 

Scale counts can sometimes be used to identify the sex of a snake when the species is not distinctly sexually dimorphic. A probe is fully inserted into the cloaca, marked at the point where it stops, then removed and measured against the subcaudal scales. The scalation count determines whether the snake is a male or female, as the hemipenes of a male will probe to a different depth (usually longer) than the cloaca of a female.

 

Skeleton

The skeletons of snakes are radically different from those of most other reptiles (as compared with the turtle here, for example), consisting almost entirely of an extended ribcage.

The skeleton of most snakes consists solely of the skull, hyoid, vertebral column, and ribs, though henophidian snakes retain vestiges of the pelvis and rear limbs.

 

The skull consists of a solid and complete neurocranium, to which many of the other bones are only loosely attached, particularly the highly mobile jaw bones, which facilitate manipulation and ingestion of large prey items. The left and right sides of the lower jaw are joined only by a flexible ligament at the anterior tips, allowing them to separate widely, and the posterior end of the lower jaw bones articulate with a quadrate bone, allowing further mobility. The mandible and quadrate bones can pick up ground-borne vibrations; because the sides of the lower jaw can move independently of one another, a snake resting its jaw on a surface has sensitive stereo auditory perception, used for detecting the position of prey. The jaw–quadrate–stapes pathway is capable of detecting vibrations on the angstrom scale, despite the absence of an outer ear and the lack of an impedance matching mechanism—provided by the ossicles in other vertebrates—for receiving vibrations from the air.

 

The hyoid is a small bone located posterior and ventral to the skull, in the 'neck' region, which serves as an attachment for the muscles of the snake's tongue, as it does in all other tetrapods.

 

The vertebral column consists of between 200 and 400 vertebrae, or sometimes more. The body vertebrae each have two ribs articulating with them. The tail vertebrae are comparatively few in number (often less than 20% of the total) and lack ribs. The vertebrae have projections that allow for strong muscle attachment, enabling locomotion without limbs.

 

Caudal autotomy (self-amputation of the tail), a feature found in some lizards, is absent in most snakes. In the rare cases where it does exist in snakes, caudal autotomy is intervertebral (meaning the separation of adjacent vertebrae), unlike that in lizards, which is intravertebral, i.e. the break happens along a predefined fracture plane present on a vertebra.

 

In some snakes, most notably boas and pythons, there are vestiges of the hindlimbs in the form of a pair of pelvic spurs. These small, claw-like protrusions on each side of the cloaca are the external portion of the vestigial hindlimb skeleton, which includes the remains of an ilium and femur.

 

Snakes are polyphyodonts with teeth that are continuously replaced

 

Snakes and other non-archosaur (crocodilians, dinosaurs + birds and allies) reptiles have a three-chambered heart that controls the circulatory system via the left and right atrium, and one ventricle. Internally, the ventricle is divided into three interconnected cavities: the cavum arteriosum, the cavum pulmonale, and the cavum venosum. The cavum venosum receives deoxygenated blood from the right atrium and the cavum arteriosum receives oxygenated blood from the left atrium. Located beneath the cavum venosum is the cavum pulmonale, which pumps blood to the pulmonary trunk.

 

The snake's heart is encased in a sac, called the pericardium, located at the bifurcation of the bronchi. The heart is able to move around, owing to the lack of a diaphragm; this adjustment protects the heart from potential damage when large ingested prey is passed through the esophagus. The spleen is attached to the gall bladder and pancreas and filters the blood. The thymus, located in fatty tissue above the heart, is responsible for the generation of immune cells in the blood. The cardiovascular system of snakes is unique for the presence of a renal portal system in which the blood from the snake's tail passes through the kidneys before returning to the heart.

 

The vestigial left lung is often small or sometimes even absent, as snakes' tubular bodies require all of their organs to be long and thin.[71] In the majority of species, only one lung is functional. This lung contains a vascularized anterior portion and a posterior portion that does not function in gas exchange. This 'saccular lung' is used for hydrostatic purposes to adjust buoyancy in some aquatic snakes and its function remains unknown in terrestrial species. Many organs that are paired, such as kidneys or reproductive organs, are staggered within the body, one located ahead of the other.

 

Snakes have no lymph nodes.

 

Venom

Cobras, vipers, and closely related species use venom to immobilize, injure, or kill their prey. The venom is modified saliva, delivered through fangs. The fangs of 'advanced' venomous snakes like viperids and elapids are hollow, allowing venom to be injected more effectively, and the fangs of rear-fanged snakes such as the boomslang simply have a groove on the posterior edge to channel venom into the wound. Snake venoms are often prey-specific, and their role in self-defense is secondary.

 

Venom, like all salivary secretions, is a predigestant that initiates the breakdown of food into soluble compounds, facilitating proper digestion. Even nonvenomous snakebites (like any animal bite) cause tissue damage.

 

Certain birds, mammals, and other snakes (such as kingsnakes) that prey on venomous snakes have developed resistance and even immunity to certain venoms.Venomous snakes include three families of snakes, and do not constitute a formal taxonomic classification group.

 

The colloquial term "poisonous snake" is generally an incorrect label for snakes. A poison is inhaled or ingested, whereas venom produced by snakes is injected into its victim via fangs. There are, however, two exceptions: Rhabdophis sequesters toxins from the toads it eats, then secretes them from nuchal glands to ward off predators; and a small unusual population of garter snakes in the US state of Oregon retains enough toxins in their livers from ingested newts to be effectively poisonous to small local predators (such as crows and foxes).

 

Snake venoms are complex mixtures of proteins, and are stored in venom glands at the back of the head. In all venomous snakes, these glands open through ducts into grooved or hollow teeth in the upper jaw. The proteins can potentially be a mix of neurotoxins (which attack the nervous system), hemotoxins (which attack the circulatory system), cytotoxins (which attack the cells directly), bungarotoxins (related to neurotoxins, but also directly affect muscle tissue), and many other toxins that affect the body in different ways. Almost all snake venom contains hyaluronidase, an enzyme that ensures rapid diffusion of the venom.

 

Venomous snakes that use hemotoxins usually have fangs in the front of their mouths, making it easier for them to inject the venom into their victims. Some snakes that use neurotoxins (such as the mangrove snake) have fangs in the back of their mouths, with the fangs curled backwards. This makes it difficult both for the snake to use its venom and for scientists to milk them. Elapids, however, such as cobras and kraits are proteroglyphous—they possess hollow fangs that cannot be erected toward the front of their mouths, and cannot "stab" like a viper. They must actually bite the victim.

 

It has been suggested that all snakes may be venomous to a certain degree, with harmless snakes having weak venom and no fangs. According to this theory, most snakes that are labelled "nonvenomous" would be considered harmless because they either lack a venom delivery method or are incapable of delivering enough to endanger a human. The theory postulates that snakes may have evolved from a common lizard ancestor that was venomous, and also that venomous lizards like the gila monster, beaded lizard, monitor lizards, and the now-extinct mosasaurs, may have derived from this same common ancestor. They share this "venom clade" with various other saurian species.

 

Venomous snakes are classified in two taxonomic families:

Elapids – cobras including king cobras, kraits, mambas, Australian copperheads, sea snakes, and coral snakes.

Viperids – vipers, rattlesnakes, copperheads/cottonmouths, and bushmasters.

There is a third family containing the opistoglyphous (rear-fanged) snakes (as well as the majority of other snake species):

 

Colubrids – boomslangs, tree snakes, vine snakes, cat snakes, although not all colubrids are venomous.

 

Reproduction

Although a wide range of reproductive modes are used by snakes, all employ internal fertilization. This is accomplished by means of paired, forked hemipenes, which are stored, inverted, in the male's tail. The hemipenes are often grooved, hooked, or spined—designed to grip the walls of the female's cloaca. The clitoris of the female snake consists of two structures located between the cloaca and the scent glands.

 

Most species of snakes lay eggs which they abandon shortly after laying. However, a few species (such as the king cobra) construct nests and stay in the vicinity of the hatchlings after incubation. Most pythons coil around their egg-clutches and remain with them until they hatch. A female python will not leave the eggs, except to occasionally bask in the sun or drink water. She will even "shiver" to generate heat to incubate the eggs.

 

Some species of snake are ovoviviparous and retain the eggs within their bodies until they are almost ready to hatch. Several species of snake, such as the boa constrictor and green anaconda, are fully viviparous, nourishing their young through a placenta as well as a yolk sac; this is highly unusual among reptiles, and normally found in requiem sharks or placental mammals. Retention of eggs and live birth are most often associated with colder environments.

 

Sexual selection in snakes is demonstrated by the 3,000 species that each use different tactics in acquiring mates. Ritual combat between males for the females they want to mate with includes topping, a behavior exhibited by most viperids in which one male will twist around the vertically elevated fore body of its opponent and force it downward. It is common for neck-biting to occur while the snakes are entwined.

 

Facultative parthenogenesis

Parthenogenesis is a natural form of reproduction in which growth and development of embryos occur without fertilization. Agkistrodon contortrix (copperhead) and Agkistrodon piscivorus (cottonmouth) can reproduce by facultative parthenogenesis, meaning that they are capable of switching from a sexual mode of reproduction to an asexual mode. The most likely type of parthenogenesis to occur is automixis with terminal fusion, a process in which two terminal products from the same meiosis fuse to form a diploid zygote. This process leads to genome-wide homozygosity, expression of deleterious recessive alleles, and often to developmental abnormalities. Both captive-born and wild-born copperheads and cottonmouths appear to be capable of this form of parthenogenesis.

 

Reproduction in squamate reptiles is almost exclusively sexual. Males ordinarily have a ZZ pair of sex-determining chromosomes, and females a ZW pair. However, the Colombian Rainbow boa (Epicrates maurus) can also reproduce by facultative parthenogenesis, resulting in production of WW female progeny. The WW females are likely produced by terminal automixis.

 

Embryonic Development

Snake embryonic development initially follows similar steps as any vertebrate embryo. The snake embryo begins as a zygote, undergoes rapid cell division, forms a germinal disc, also called a blastodisc, then undergoes gastrulation, neurulation, and organogenesis. Cell division and proliferation continues until an early snake embryo develops and the typical body shape of a snake can be observed. Multiple features differentiate the embryologic development of snakes from other vertebrates, two significant factors being the elongation of the body and the lack of limb development.

 

The elongation in snake body is accompanied by a significant increase in vertebra count (mice have 60 vertebrae, whereas snakes may have over 300). This increase in vertebrae is due to an increase in somites during embryogenesis, leading to an increased number of vertebrae which develop. Somites are formed at the presomitic mesoderm due to a set of oscillatory genes that direct the somitogenesis clock. The snake somitogenesis clock operates at a frequency 4 times that of a mouse (after correction for developmental time), creating more somites, and therefore creating more vertebrae. This difference in clock speed is believed to be caused by differences in Lunatic fringe gene expression, a gene involved in the somitogenesis clock.

 

There is ample literature focusing on the limb development/lack of development in snake embryos and the gene expression associated with the different stages. In basal snakes, such as the python, embryos in early development exhibit a hind limb bud that develops with some cartilage and a cartilaginous pelvic element, however this degenerates before hatching. This presence of vestigial development suggests that some snakes are still undergoing hind limb reduction before they are eliminated. There is no evidence in basal snakes of forelimb rudiments and no examples of snake forelimb bud initiation in embryo, so little is known regarding the loss of this trait. Recent studies suggests that hind limb reduction could be due to mutations in enhancers for the SSH gene, however other studies suggested that mutations within the Hox Genes or their enhancers could contribute to snake limblessness. Since multiple studies have found evidence suggesting different genes played a role in the loss of limbs in snakes, it is likely that multiple gene mutations had an additive effect leading to limb loss in snakes.

 

Behavior

Snake coiled on a stick in Oklahoma. It was brumating in a large pile of wood chips, found by this landscaper after he bulldozed the pile in late autumn 2018.

In regions where winters are too cold for snakes to tolerate while remaining active, local species will enter a period of brumation. Unlike hibernation, in which the dormant mammals are actually asleep, brumating reptiles are awake but inactive. Individual snakes may brumate in burrows, under rock piles, or inside fallen trees, or large numbers of snakes may clump together in hibernacula.

 

Feeding and diet

All snakes are strictly carnivorous, preying on small animals including lizards, frogs, other snakes, small mammals, birds, eggs, fish, snails, worms, and insects. Snakes cannot bite or tear their food to pieces so must swallow their prey whole. The eating habits of a snake are largely influenced by body size; smaller snakes eat smaller prey. Juvenile pythons might start out feeding on lizards or mice and graduate to small deer or antelope as an adult, for example.

 

The snake's jaw is a complex structure. Contrary to the popular belief that snakes can dislocate their jaws, they have an extremely flexible lower jaw, the two halves of which are not rigidly attached, and numerous other joints in the skull, which allow the snake to open its mouth wide enough to swallow prey whole, even if it is larger in diameter than the snake itself. For example, the African egg-eating snake has flexible jaws adapted for eating eggs much larger than the diameter of its head.  This snake has no teeth, but does have bony protrusions on the inside edge of its spine, which it uses to break the shell when eating eggs.

 

The majority of snakes eat a variety of prey animals, but there is some specialization in certain species. King cobras and the Australian bandy-bandy consume other snakes. Species of the family Pareidae have more teeth on the right side of their mouths than on the left, as they mostly prey on snails and the shells usually spiral clockwise.

 

Some snakes have a venomous bite, which they use to kill their prey before eating it. Other snakes kill their prey by constriction, while some swallow their prey when it is still alive.

 

After eating, snakes become dormant to allow the process of digestion to take place; this is an intense activity, especially after consumption of large prey. In species that feed only sporadically, the entire intestine enters a reduced state between meals to conserve energy. The digestive system is then 'up-regulated' to full capacity within 48 hours of prey consumption. Being ectothermic ("cold-blooded"), the surrounding temperature plays an important role in the digestion process. The ideal temperature for snakes to digest food is 30 °C (86 °F). There is a huge amount of metabolic energy involved in a snake's digestion, for example the surface body temperature of the South American rattlesnake (Crotalus durissus) increases by as much as 1.2 °C (2.2 °F) during the digestive process. If a snake is disturbed after having eaten recently, it will often regurgitate its prey to be able to escape the perceived threat. When undisturbed, the digestive process is highly efficient; the snake's digestive enzymes dissolve and absorb everything but the prey's hair (or feathers) and claws, which are excreted along with waste.

 

Hooding and spitting

Hooding (expansion of the neck area) is a visual deterrent, mostly seen in cobras (elapids), and is primarily controlled by rib muscles.[98] Hooding can be accompanied by spitting venom towards the threatening object,[99] and producing a specialized sound; hissing. Studies on captive cobras showed that 13 to 22% of the body length is raised during hooding.

 

Locomotion

The lack of limbs does not impede the movement of snakes. They have developed several different modes of locomotion to deal with particular environments. Unlike the gaits of limbed animals, which form a continuum, each mode of snake locomotion is discrete and distinct from the others; transitions between modes are abrupt.

 

Lateral undulation

Lateral undulation is the sole mode of aquatic locomotion, and the most common mode of terrestrial locomotion In this mode, the body of the snake alternately flexes to the left and right, resulting in a series of rearward-moving "waves". While this movement appears rapid, snakes have rarely been documented moving faster than two body-lengths per second, often much less. This mode of movement has the same net cost of transport (calories burned per meter moved) as running in lizards of the same mass.

 

Terrestrial lateral undulation is the most common mode of terrestrial locomotion for most snake species. In this mode, the posteriorly moving waves push against contact points in the environment, such as rocks, twigs, irregularities in the soil, etc. Each of these environmental objects, in turn, generates a reaction force directed forward and towards the midline of the snake, resulting in forward thrust while the lateral components cancel out. The speed of this movement depends upon the density of push-points in the environment, with a medium density of about 8[clarification needed] along the snake's length being ideal. The wave speed is precisely the same as the snake speed, and as a result, every point on the snake's body follows the path of the point ahead of it, allowing snakes to move through very dense vegetation and small openings.

 

When swimming, the waves become larger as they move down the snake's body, and the wave travels backwards faster than the snake moves forwards. Thrust is generated by pushing their body against the water, resulting in the observed slip. In spite of overall similarities, studies show that the pattern of muscle activation is different in aquatic versus terrestrial lateral undulation, which justifies calling them separate modes. All snakes can laterally undulate forward (with backward-moving waves), but only sea snakes have been observed reversing the motion (moving backwards with forward-moving waves).

 

Sidewinding

Most often employed by colubroid snakes (colubrids, elapids, and vipers) when the snake must move in an environment that lacks irregularities to push against (rendering lateral undulation impossible), such as a slick mud flat, or a sand dune, sidewinding is a modified form of lateral undulation in which all of the body segments oriented in one direction remain in contact with the ground, while the other segments are lifted up, resulting in a peculiar "rolling" motion. This mode of locomotion overcomes the slippery nature of sand or mud by pushing off with only static portions on the body, thereby minimizing slipping. The static nature of the contact points can be shown from the tracks of a sidewinding snake, which show each belly scale imprint, without any smearing. This mode of locomotion has very low caloric cost, less than 1⁄3 of the cost for a lizard to move the same distance. Contrary to popular belief, there is no evidence that sidewinding is associated with the sand being hot.

 

Concertina

When push-points are absent, but there is not enough space to use sidewinding because of lateral constraints, such as in tunnels, snakes rely on concertina locomotion. In this mode, the snake braces the posterior portion of its body against the tunnel wall while the front of the snake extends and straightens. The front portion then flexes and forms an anchor point, and the posterior is straightened and pulled forwards. This mode of locomotion is slow and very demanding, up to seven times the cost of laterally undulating over the same distance. This high cost is due to the repeated stops and starts of portions of the body as well as the necessity of using active muscular effort to brace against the tunnel walls.

 

Arboreal

The movement of snakes in arboreal habitats has only recently been studied. While on tree branches, snakes use several modes of locomotion depending on species and bark texture. In general, snakes will use a modified form of concertina locomotion on smooth branches, but will laterally undulate if contact points are available. Snakes move faster on small branches and when contact points are present, in contrast to limbed animals, which do better on large branches with little 'clutter'.

 

Gliding snakes (Chrysopelea) of Southeast Asia launch themselves from branch tips, spreading their ribs and laterally undulating as they glide between trees. These snakes can perform a controlled glide for hundreds of feet depending upon launch altitude and can even turn in midair.

 

Rectilinear

The slowest mode of snake locomotion is rectilinear locomotion, which is also the only one where the snake does not need to bend its body laterally, though it may do so when turning. In this mode, the belly scales are lifted and pulled forward before being placed down and the body pulled over them. Waves of movement and stasis pass posteriorly, resulting in a series of ripples in the skin. The ribs of the snake do not move in this mode of locomotion and this method is most often used by large pythons, boas, and vipers when stalking prey across open ground as the snake's movements are subtle and harder to detect by their prey in this manner.

 

Interactions with humans

Snakes do not ordinarily prey on humans. Unless startled or injured, most snakes prefer to avoid contact and will not attack humans. With the exception of large constrictors, nonvenomous snakes are not a threat to humans. The bite of a nonvenomous snake is usually harmless; their teeth are not adapted for tearing or inflicting a deep puncture wound, but rather grabbing and holding. Although the possibility of infection and tissue damage is present in the bite of a nonvenomous snake, venomous snakes present far greater hazard to humans.  The World Health Organization (WHO) lists snakebite under the "other neglected conditions" category.

 

Documented deaths resulting from snake bites are uncommon. Nonfatal bites from venomous snakes may result in the need for amputation of a limb or part thereof. Of the roughly 725 species of venomous snakes worldwide, only 250 are able to kill a human with one bite. Australia averages only one fatal snake bite per year. In India, 250,000 snakebites are recorded in a single year, with as many as 50,000 recorded initial deaths. The WHO estimates that on the order of 100,000 people die each year as a result of snake bites, and around three times as many amputations and other permanent disabilities are caused by snakebites annually.

 

The treatment for a snakebite is as variable as the bite itself. The most common and effective method is through antivenom (or antivenin), a serum made from the venom of the snake. Some antivenom is species-specific (monovalent) while some is made for use with multiple species in mind (polyvalent). In the United States for example, all species of venomous snakes are pit vipers, with the exception of the coral snake. To produce antivenom, a mixture of the venoms of the different species of rattlesnakes, copperheads, and cottonmouths is injected into the body of a horse in ever-increasing dosages until the horse is immunized. Blood is then extracted from the immunized horse. The serum is separated and further purified and freeze-dried. It is reconstituted with sterile water and becomes antivenom. For this reason, people who are allergic to horses are more likely to have an allergic reaction to antivenom. Antivenom for the more dangerous species (such as mambas, taipans, and cobras) is made in a similar manner in South Africa, Australia , and India, although these antivenoms are species-specific.

 

Snake charmers

In some parts of the world, especially in India, snake charming is a roadside show performed by a charmer. In such a show, the snake charmer carries a basket containing a snake that he seemingly charms by playing tunes with his flutelike musical instrument, to which the snake responds. The snake is in fact responding to the movement of the flute, not the sound it makes, as snakes lack external ears (though they do have internal ears).

 

The Wildlife Protection Act of 1972 in India technically prohibits snake charming on the grounds of reducing animal cruelty. Other types of snake charmers use a snake and mongoose show, where the two animals have a mock fight; however, this is not very common, as the animals may be seriously injured or killed. Snake charming as a profession is dying out in India because of competition from modern forms of entertainment and environment laws proscribing the practice. Many Indians have never seen snake charming and it is becoming a folktale of the past.

 

Trapping

The Irulas tribe of Andhra Pradesh and Tamil Nadu in India have been hunter-gatherers in the hot, dry plains forests, and have practiced the art of snake catching for generations. They have a vast knowledge of snakes in the field. They generally catch the snakes with the help of a simple stick. Earlier, the Irulas caught thousands of snakes for the snake-skin industry. After the complete ban of the snake-skin industry in India and protection of all snakes under the Indian Wildlife (Protection) Act 1972, they formed the Irula Snake Catcher's Cooperative and switched to catching snakes for removal of venom, releasing them in the wild after four extractions. The venom so collected is used for producing life-saving antivenom, biomedical research and for other medicinal products. The Irulas are also known to eat some of the snakes they catch and are very useful in rat extermination in the villages.

 

Despite the existence of snake charmers, there have also been professional snake catchers or wranglers. Modern-day snake trapping involves a herpetologist using a long stick with a V-shaped end. Some television show hosts, like Bill Haast, Austin Stevens, Steve Irwin, and Jeff Corwin, prefer to catch them using bare hands.

 

Consumption

Although snakes are not commonly thought of as food, their consumption is acceptable in some cultures and may even be considered a delicacy. Snake soup is popular in Cantonese cuisine, consumed by locals in the autumn to warm their bodies. Western cultures document the consumption of snakes only under extreme circumstances of hunger, with the exception of cooked rattlesnake meat, which is commonly consumed in Texas and parts of the Midwestern United States.

 

In Asian countries such as China, Taiwan, Thailand, Indonesia, Vietnam, and Cambodia, drinking the blood of a snake—particularly the cobra—is believed to increase sexual virility. When possible, the blood is drained while the cobra is still alive, and it is usually mixed with some form of liquor to improve the taste.

 

The use of snakes in alcohol is accepted in some Asian countries. In such cases, one or more snakes are left to steep in a jar or container of liquor, as this is claimed to make the liquor stronger (as well as more expensive). One example of this is the Habu snake, which is sometimes placed in the Okinawan liqueur Habushu (ハブ酒), also known as "Habu Sake".

 

Snake wine (蛇酒) is an alcoholic beverage produced by infusing whole snakes in rice wine or grain alcohol. First recorded as being consumed in China during the Western Zhou dynasty, this drink is considered an important curative and is believed to reinvigorate a person according to traditional Chinese medicine

 

Pets

In the Western world, some snakes are kept as pets, especially docile species such as the ball python and corn snake. To meet the demand, a captive breeding industry has developed. Snakes bred in captivity are considered preferable to specimens caught in the wild and tend to make better pets. Compared with more traditional types of companion animal, snakes can be very low-maintenance pets; they require minimal space, as most common species do not exceed 5 feet (1.5 m) in length, and can be fed relatively infrequently—usually once every five to 14 days. Certain snakes have a lifespan of more than 40 years if given proper care.

 

Symbolism

In ancient Mesopotamia, Nirah, the messenger god of Ištaran, was represented as a serpent on kudurrus, or boundary stones. Representations of two intertwined serpents are common in Sumerian art and Neo-Sumerian artwork and still appear sporadically on cylinder seals and amulets until as late as the thirteenth century BC. The horned viper (Cerastes cerastes) appears in Kassite and Neo-Assyrian kudurrus and is invoked in Assyrian texts as a magical protective entity. A dragon-like creature with horns, the body and neck of a snake, the forelegs of a lion, and the hind-legs of a bird appears in Mesopotamian art from the Akkadian Period until the Hellenistic Period (323 BC–31 BC). This creature, known in Akkadian as the mušḫuššu, meaning "furious serpent", was used as a symbol for particular deities and also as a general protective emblem. It seems to have originally been the attendant of the Underworld god Ninazu, but later became the attendant to the Hurrian storm-god Tishpak, as well as, later, Ninazu's son Ningishzida, the Babylonian national god Marduk, the scribal god Nabu, and the Assyrian national god Ashur.

 

In Egyptian history, the snake occupies a primary role with the Nile cobra adorning the crown of the pharaoh in ancient times. It was worshipped as one of the gods and was also used for sinister purposes: murder of an adversary and ritual suicide (Cleopatra). The ouroboros was a well-known ancient Egyptian symbol of a serpent swallowing its own tail. The precursor to the ouroboros was the "Many-Faced", a serpent with five heads, who, according to the Amduat, the oldest surviving Book of the Afterlife, was said to coil around the corpse of the sun god Ra protectively. The earliest surviving depiction of a "true" ouroboros comes from the gilded shrines in the tomb of Tutankhamun. In the early centuries AD, the ouroboros was adopted as a symbol by Gnostic Christians and chapter 136 of the Pistis Sophia, an early Gnostic text, describes "a great dragon whose tail is in its mouth". In medieval alchemy, the ouroboros became a typical western dragon with wings, legs, and a tail.

 

In the Bible, King Nahash of Ammon, whose name means "Snake", is depicted very negatively, as a particularly cruel and despicable enemy of the ancient Hebrews.

 

The ancient Greeks used the Gorgoneion, a depiction of a hideous face with serpents for hair, as an apotropaic symbol to ward off evil. In a Greek myth described by Pseudo-Apollodorus in his Bibliotheca, Medusa was a Gorgon with serpents for hair whose gaze turned all those who looked at her to stone and was slain by the hero Perseus. In the Roman poet Ovid's Metamorphoses, Medusa is said to have once been a beautiful priestess of Athena, whom Athena turned into a serpent-haired monster after she was raped by the god Poseidon in Athena's temple. In another myth referenced by the Boeotian poet Hesiod and described in detail by Pseudo-Apollodorus, the hero Heracles is said to have slain the Lernaean Hydra, a multiple-headed serpent which dwelt in the swamps of Lerna.

 

The legendary account of the foundation of Thebes mentioned a monster snake guarding the spring from which the new settlement was to draw its water. In fighting and killing the snake, the companions of the founder Cadmus all perished – leading to the term "Cadmean victory" (i.e. a victory involving one's own ruin).

 

Three medical symbols involving snakes that are still used today are Bowl of Hygieia, symbolizing pharmacy, and the Caduceus and Rod of Asclepius, which are symbols denoting medicine in general.

 

One of the etymologies proposed for the common female first name Linda is that it might derive from Old German Lindi or Linda, meaning a serpent.

 

India is often called the land of snakes and is steeped in tradition regarding snakes. Snakes are worshipped as gods even today with many women pouring milk on snake pits (despite snakes' aversion for milk). The cobra is seen on the neck of Shiva and Vishnu is depicted often as sleeping on a seven-headed snake or within the coils of a serpent. There are also several temples in India solely for cobras sometimes called Nagraj (King of Snakes) and it is believed that snakes are symbols of fertility. There is a Hindu festival called Nag Panchami each year on which day snakes are venerated and prayed to. See also Nāga.

 

In India there is another mythology about snakes. Commonly known in Hindi as "Ichchhadhari" snakes. Such snakes can take the form of any living creature, but prefer human form. These mythical snakes possess a valuable gem called "Mani", which is more brilliant than diamond. There are many stories in India about greedy people trying to possess this gem and ending up getting killed.

 

The snake is one of the 12 celestial animals of Chinese zodiac, in the Chinese calendar.

 

Many ancient Peruvian cultures worshipped nature. They emphasized animals and often depicted snakes in their art.

 

Religion

Snakes are used in Hinduism as a part of ritual worship. In the annual Nag Panchami festival, participants worship either live cobras or images of Nāgas. Lord Shiva is depicted in most images with a snake coiled around his neck. Puranic literature includes various stories associated with snakes, for example Shesha is said to hold all the planets of the Universe on his hoods and to constantly sing the glories of Vishnu from all his mouths. Other notable snakes in Hinduism are Vasuki, Takshaka, Karkotaka, and Pingala. The term Nāga is used to refer to entities that take the form of large snakes in Hinduism and Buddhism.

 

Snakes have been widely revered in many cultures, such as in ancient Greece where the serpent was seen as a healer.[148] Asclepius carried a serpent wound around his wand, a symbol seen today on many ambulances. In Judaism, the snake of brass is also a symbol of healing, of one's life being saved from imminent death.

 

In religious terms, the snake and jaguar were arguably the most important animals in ancient Mesoamerica. "In states of ecstasy, lords dance a serpent dance; great descending snakes adorn and support buildings from Chichen Itza to Tenochtitlan, and the Nahuatl word coatl meaning serpent or twin, forms part of primary deities such as Mixcoatl, Quetzalcoatl, and Coatlicue." In the Maya and Aztec calendars, the fifth day of the week was known as Snake Day.

 

In some parts of Christianity, the redemptive work of Jesus Christ is compared to saving one's life through beholding the Nehushtan (serpent of brass). Snake handlers use snakes as an integral part of church worship, to demonstrate their faith in divine protection. However, more commonly in Christianity, the serpent has been depicted as a representative of evil and sly plotting, as seen in the description in Genesis of a snake tempting Eve in the Garden of Eden. Saint Patrick is purported to have expelled all snakes from Ireland while converting the country to Christianity in the 5th century, thus explaining the absence of snakes there.

 

In Christianity and Judaism, the snake makes its infamous appearance in the first book of the Bible when a serpent appears before Adam and Eve and tempts them with the forbidden fruit from the Tree of Knowledge. The snake returns in the Book of Exodus when Moses turns his staff into a snake as a sign of God's power, and later when he makes the Nehushtan, a bronze snake on a pole that when looked at cured the people of bites from the snakes that plagued them in the desert. The serpent makes its final appearance symbolizing Satan in the Book of Revelation: "And he laid hold on the dragon the old serpent, which is the devil and Satan, and bound him for a thousand years."

 

In Neo-Paganism and Wicca, the snake is seen as a symbol of wisdom and knowledge. Additionally, snakes are sometimes associated with Hecate, the Greek goddess of witchcraft.

 

Medicine

Several compounds from snake venoms are being researched as potential treatments or preventatives for pain, cancers, arthritis, stroke, heart disease, hemophilia, and hypertension, and to control bleeding (e.g. during surgery).

Edit: Many people question the colors. The purpose of the duel was to create some thing with as many colors as possible that are not just splashes or monochromatic.

 

I built this for a duel between me and Fuzz-E. 7 colors used: dark red, dark blue, light orange, sand blue, black, white, and silver.

 

I always wanted to build a decent dragon and never could no matter how many times I tried. Now, this is the amalgamation of all of my experience. There are techniques in here that I've made and never used as well as a whole heap of older complex techniques.

 

This is nearly fully posable, I can even close his wings. The only problem I'm having is the balancing issue... he's huge.

Mosasaur skeleton, Houstom Museum of Natural sciences

 

iPhone 5s

I’m still struggling to keep up with a daily build now that school’s back in session, but I’m still having fun with this series—so I guess I’ll keep going into September!

 

Today’s build was inspired by one key seed part—and I bet you can guess what that is. 😉 I think the brushes work swell for the Mosasaur’s jaws, but integrating the aqua blue was a challenge. If only I had more specialized bricks in that color....

 

Although I enjoyed building this aquatic reptile, my favorite part was building the squids.

This is an aquatic dinosaur. Perhaps someone will know the name of this big creature!

 

The fossil is of a Mosasaur, an extinct marine reptile which appeared towards the end of the Cretaceous period.

 

Thanks [https://www.flickr.com/photos/skip106/]

Lewis Dodgson: Generic Batman goon head and Vacation Robin arms on a legoland worker torso with the logo and nametag erased.

 

Donald Gennaro (Amber Mine): The mine scene is the perfect excuse to not give him shorts, credit to legotaku for the head idea, 2010 Snape/General Rieekan on a President Business torso.

 

M.B. Nash: Been wanting to try this combo out. Painted Han Solo torso with the head and legs of Aaron Cash.

 

Jack the mercenary: Guy who opened the Mosasaur gates at the beginning of Fallen Kingdom. Imperial Gunner head, Captain Jonas torso, Lucy legs.

Scale: 1:20

Producer: Sideshow Collectibles

Released: 2015

Time: Upper Cretaceous

When you get to the backlot at Kino Sports Complex, you see a lot of unusual stuff.

Tucson Convention Center is indoors; the exhibits are nicely curated. It is mostly retail type sales. In contrast, the Kino is mostly outside on the parking lots and fields at the complex There are some very large tents, about the size of a football field and some smaller 10x10 and 20x10 tents. Many of the gems, minerals, and displays are brought in by forklift on pallets. In the tents, the specimens are in large rectangular plastic containers. At TCC the vendors are retail and many of the gems sell by the gram. At Kino the vendors are retail and wholesale. Gems and minerals are sold by the pound or by the piece.

 

This is a cross-section of an ammonite fossil.

simple.wikipedia.org/wiki/Ammonite

Ammonites[1] were marine cephalopod molluscs of the subclass Ammonoidea.[2]

Their widely-known fossils show a ribbed spiral-form shell, in the end compartment of which lived the tentacled animal. These creatures lived in the seas from at least 400 to 65 million years ago. They became extinct at the K/T extinction event. Their nearest living relatives are the octopus, squid, cuttlefish and Nautilus.

Nine orders are recognised in the Ammonoidea: five in the Palaeozoic and four in the Mesozoic.

 

Ammonites began life as tiny planktonic creatures less than 1mm in diameter. In their infancy they would have been vulnerable to attack from other predators, including mosasaurs and fish. However, their shell gave their soft parts some protection. The existence of sexual dimorphism, with larger females and smaller males, has been much discussed.[3]p244 The matter is still open, but at least in some species deposits are found with two sizes and no intermediates.

 

As the shell grew, the back compartments were sealed with a semi-permeable membrane. A single tube, the siphuncle, passed through the centre of each septum and connected the chambers The animal could add or withdraw gas as it needed for buoyancy. On the inside of the shell, the compartments are marked by elaborate sutures. These can be seen easily on those fossils which are internal moulds, as most are.[3]p241 Ammonites were active predators, and they themselves were often eaten by fish and marine reptiles. The fossils are almost always found with the outer compartment broken off, probably as a result of just such an attack.

 

Ammonites swam by jet propulsion, as do most other cepalopods. Water would have come into the mantle cavity, passed over the gills, and was squirted out. Nautilus also has an escape mechanism, where a contraction of the branchial (gill) chamber causes the animal to jump out of the way of a predator.[3]p232 It would be reasonable to suppose that ammonites had a similar mechanism.

 

www.visittucson.org/tucson-gem-mineral-fossil-showcase/

Every year the world-renowned Tucson Gem, Mineral & Fossil Showcase is like a time portal, a trip around the world, and a treasure hunt all rolled into one. Every winter, more than 65,000 guests from around the globe descend upon Tucson, AZ, to buy, sell, trade, and bear witness to rare and enchanting gems, minerals, and fossils at more than 50 gem show locations across the city. If you're planning a winter visit to Tucson, you won't want to miss this three-week-long event filled with shows, related events, a free day at the gem & mineral museum, and much, much more!

"Whether you’re looking for a $5 shimmering crystal necklace or a show-stopping $200,000 crystallized rock from an exotic location, the Tucson Gem, Mineral, & Fossil Shows have something for everyone.

 

www.visittucson.org/blog/post/gems-and-minerals/

www.tgms.org/show

'Bruce' is 10 metres (43 feet) of awesome-jawed mosasaur, top marine predator of the Cretaceous. There's a "Prepare to Meet Bruce" sign at the entrance to the beast's den.

1 3 4 5 6 7 ••• 41 42