View allAll Photos Tagged Cyanogen
My small photo show is now on!
If you are close to Sapporo, please stop by.
I will upload "one photo a day"
札幌のカフェで小さな個展を開催しています。
お近くの方はどうぞお立ち寄りください。
cafe&gallery Rabbit On Sapporo
ある時 母から古い封とうを受け取りました
のぞいてみると わたしが生まれて間もなく亡くなった
祖父の手紙と写真が入っていました
わたしの手にわたってからは
引き出しの中にしばらく置き去りにされていて
誰にも読み返されることはありませんでした
One day, I was handed an old envelope from my mother.
I looked into it, there were the letters and photographs of my Grand
father who passed away when I was two years old.
Those letters and photographs had never red or looked again by anyone
else, because they were left behind the drawer of my desk since then.
photo left:front my mother and back her older sister. this was taken in Manchuria, 1937.
photo right:my room by the window (pinhole)
I almost threw this one away! Then I realized that maybe I could learn something from it, so here it is.
Background: I shot this from my 12" Meade, because that is what was installed on the mount last night. I also attempted it with this setup, because I knew that the comet was receding, and therefore getting smaller and dimmer with time. My thinking was that maybe I'll get something decent. Yes, this was too much scope for the comet at this time, but that is not the main issue that I have with the image.
My approach to taking this image was to shoot maybe 30 "underexposed" frames to stack and bring out the tail. Exposure was f/8, 15s, ISO 1600. But alas, I got nine good frames before losing the comet in the trees.
A cursory examination of the raw frames looked like the coma was exposed about right as it had that pleasing cyanogen green tint. Just the slightest hint of a tail left me hopeful that there were data in there that could be teased out in processing. Maybe there is, and I just don't know how to properly tease it yet?
So, this is image is what I ended up with after stacking in DSS' comet alignment mode. It is very noisy as a result of being waaay over processed in Photoshop. The coma RGB levels were 255 in all three channels even before I began applying stretches.
My question, for anybody who is willing to help, is how do I correctly expose both the coma and the tail when imaging a comet?
Meade LX850 (12" f/8)
Canon EOS 60Da (15s, ISO 1600)
Deep Sky Stacker (Comet Alignment)
Photoshop
This image was acquired at the Mount Lemmon SkyCenter as part of the public outreach programs the observatory runs each night. The SkyCenter regularly releases images like this to inspire the public and show the beauty of the Universe.
Optics 24-inch RC Optical Systems Telescope
Camera SBIG STL11000 CCD Camera
Filters Custom Scientific
Dates November 7th 2008
Location Mount Lemmon SkyCenter
Exposure LRGB = 160:30:30:30 minutes
Acquisition TheSky (Software Bisque), Maxim DL/CCD (Cyanogen)
Processing CCDStack (CCDWare), Mira (MiraMetrics), Maxim DL (Cyanogen), Photoshop CS3 (Adobe)
Credit Line & CopyrightAdam Block/Mount Lemmon SkyCenter/University of Arizona
While this photo features Comet Lovejoy, several other interesting objects can be seen within the frame. This photo, one of many of my observations of this comet, is the only one in which I was able to capture its tail. Read my observation reports for more details.
The comet, seen near the lower center of the frame, appears green as a result of the Sun's ultraviolet radiation exciting cyanogen gas contained in the comet's gaseous halo. Above the comet near the center of the frame is the ever-pretty Pleiades (M45 in the Messier Catalog) open star cluster. Moving the the right center of the frame, is a red and dimly glowing (at least in this photo) cloud of hydrogen gas called California Nebula can be seen. Upper left is a large open star cluster, that includes the bright and obviously reddish star Aldebaran, known as the Hyades. The prominent V-shape is also the face of the bull in the zodiacal constellation Taurus. And finally, above and to the right of Hyades is the small but tight Full Moon Cluster.
Canon EOS 60Da with 55mm lens at f/1.4 piggy backed and guided on TeleVue NP101is.
My small photo show is now on!
If you are close to Sapporo, please stop by.
札幌のカフェで小さな個展を開催しています。
お近くの方はどうぞお立ち寄りください。
cafe&gallery Rabbit On Sapporo
ある時 母から古い封とうを受け取りました
のぞいてみると わたしが生まれて間もなく亡くなった
祖父の手紙と写真が入っていました
わたしの手にわたってからは
引き出しの中にしばらく置き去りにされていて
誰にも読み返されることはありませんでした
One day, I was handed an old envelope from my mother.
I looked into it, there were the letters and photographs of my Grand
father who passed away when I was two years old.
Those letters and photographs had never red or looked again by anyone
else, because they were left behind the drawer of my desk since then.
photo left:Iwate taimagura village, pinhole 2005 spring by mistubako
photo right:Iwate taimagura village, pinhole 2005 spring by mistubako
My small photo show is now on!
If you are close to Sapporo, please stop by.
I will upload one photo a day.
札幌のカフェで小さな個展を開催しています。
お近くの方はどうぞお立ち寄りください。
cafe&gallery Rabbit On Sapporo
ある時 母から古い封とうを受け取りました
のぞいてみると わたしが生まれて間もなく亡くなった
祖父の手紙と写真が入っていました
わたしの手にわたってからは
引き出しの中にしばらく置き去りにされていて
誰にも読み返されることはありませんでした
One day, I was handed an old envelope from my mother.
I looked into it, there were the letters and photographs of my Grand
father who passed away when I was two years old.
Those letters and photographs had never red or looked again by anyone
else, because they were left behind the drawer of my desk since then.
photo left:Granpa Matsuo self-portrait, in early 1900's
photo left:Yashima moor Nagano, pinhole 2006 fall by mistubako
(public domain image taken by the Hubble Telescope & provided by NASA)
-------------------------
This is a very distant image of an unnamed comet (catalog designation P/2019 LD2) near the orbit of Jupiter. It's a composite of two exposures taken on 1 April 2020 and 8 May 2020. This object was & is still sometimes referred to as an "asteroid" - it is not an asteroid. Ice-rich bodies that produce tails are comets. Asteroids are rich in silicate minerals and/or metal.
-------------------------
See info. at:
hubblesite.org/contents/media/images/2021/05/4764-Image?n...
and
en.wikipedia.org/wiki/P/2019_LD2_(ATLAS)
-------------------------
Comets are often described as "dirty snowballs" or "icy dirtballs". They are small to moderately small, ice-rich bodies that usually have highly elliptical orbits and occasionally get near the Sun. They appear in the sky without warning and move relatively quickly. They last weeks to months, then disappear. Some are bright enough to see during daytime. Thousands of comets have been cataloged, but it's been speculated that trillions of them occur in the far-distant areas of the Solar System.
The "fuzzy star" portion is called the comet's head - it contains a solid nucleus. The fuzzy halo around the nucleus is the coma, which is really the comet's atmosphere. Comas develop when the comet is sufficiently close to the Sun to warm up and ice starts volatilizing. The comet's low gravity keeps some of this material close to the nucleus. The coma of some comets can be larger than the Sun itself. Comet heads often have a greenish glow to them, caused by C2 and CN molecules.
The comet's tail also only develops relatively close to the Sun and always points away from it. The tail of a comet is basically a coma that has been stretched out by solar wind. Some comet tails are over 3.5 AU (astronomical units) long. The morphology of comet tails and tail streamers vary with time; sections of comet tails can be severed and reconnected by irregularities in solar wind and magnetic field lines.
Two comet tails are often visible - one is straight and bluish-colored and the other is curved and light-colored. The straight, bluish tail is the ion tail - it is composed of electrically charged gas atoms or molecules. The curved, light-colored tail is the dust tail - it is composed of tiny solid particles (mineral and rock fragments). The degree of curvature varies (for a spectacular example, see Comet McNaught: www.flickr.com/photos/98389309@N02/10055241504 ).
Based on trajectory studies, comets are known to have two sources. Short-period comets (also known as periodic comets) orbit the Sun regularly, on time scales of 200 years or less. Their orbits are usually prograde (= counter-clockwise movement around the Sun, when viewed from above the Sun's North Pole) and are close to the plane of the ecliptic. Most short-period comets appear to originate from beyond Planet Pluto. They are estimated to last a few hundred thousand years before they self-distintegrate or plunge into the Sun. A good example of a short-period comet is Halley's Comet, which returns every 76 years.
Long-period comets have very long-duration orbits, on time scales of thousands to millions of years. They come in from any and all directions (= not restricted to orbiting close to the plane of the ecliptic). A good example is Comet Hale-Bopp, which was visible in daytime in 1997. Long-period comets appear to originate from the Oort Cloud, a hypothetical, extremely distant source area that forms a more-or-less spherical halo around the Solar System. No direct evidence for the Oort Cloud exists.
The geology of comet nuclei was speculative until spacecraft visited, imaged, and sampled some of them. Six cometary nuclei have been visited so far: Halley, Tempel I, Wild 2, Hartley 2, Borrelly, and Churyumov-Gerasimenko. Based on this small sample set, comet nuclei have irregular shapes - their low gravity does not result in subspherical shapes (they're not "round"). Three imaged nuclei are bilobed, each of which probably formed by low-velocity impacts of two separate objects. Nuclei vary in size from tens of kilometers to about one-tenth of a kilometer across. All are low-density, about half that of water - they're fluffy, similar to cotton candy. The surfaces of comet nuclei are dark-colored, organic-rich crusts. One lander sent to a comet did obtain outcrop-scale imagery showing an agglomerate rock face, composed of pebbles. When close to the Sun, ice volatilization results in comet nuclei releasing material in the form of geyser-like jets. Individual jets can be narrow or wide. Some are short-lived; some occur due to cliff collapse events. Cometary jetting involves water vapor (H2O) and carbon dioxide gas (CO2) escaping at high velocity from subcircular pits similar to sinkholes.
Dust samples captured by a spacecraft show that cometary jets shoot out gas and solid, aggregate particles (composed of many smaller grains). Individual dust grains disaggregate during ejection and also disaggregate when impacting a spacecraft's collector.
Based in particular on data from Comet Wild 2 and Comet Churyumov-Gerasimenko, comets are known to be a mixture of various types of ice and trapped gases and mineral grains and rock fragments. These have multiple origins: some are Solar System materials, some are materials from the interstellar medium, and some are presolar materials derived from other stars.
Minerals identified in comet samples include forsterite olivine, diopside pyroxene, anorthite plagioclase feldspar, pyrrhotite, pentlandite, spinel, and osbornite. All of these are high-temperature minerals, co-occurring with ice.
Multiple varieties of ice have been identified in comets: three types of water ice (H2O, HDO, and D2O), hydrogen peroxide ice (H2O2), dry ice (CO2), carbon monoxide ice (CO), and ammonia ice (NH3) (+ varieties with D instead of H).
Other chemicals identified in comets include molecular oxygen (O2), molecular nitrogen (N2), sulfur chemicals (H2S, HDS, S2, S3, S4, S8, SO, SO2, SCO, CS2, and organic sulfur compounds), hydrogen cyanide (HCN), cyanogen (C2N2), ammonium cyanide (NH4CN), and cyanamide (NH2CN). Five types of alcohol are in comets: methanol (CH3OH / CH3OD), ethanol (C2H5OH), propanol (H3H7OH), butanol (H4H9OH), and pentanol (C5H11OH). Seven, possibly eight types of petroleum natural gas are present: methane (CH4), ethane (C2H6), propane (H3H8), butane (H4H10), pentane (C5H12), hexane (C6H14), heptane (C7H16), and probably octane (C8H18). Nasty acids are also in comet nuclei: formic acid (HCOOH), acetic acid (C2H4O2), benzoic acid (C7H6O2), hydrobromic acid (HBr), hydrochloric acid (HCl), and hydrofluoric acid (HF). On top of all that, there are noble gases: argon (Ar), krypton (Kr), and 7 isotopes of xenon (Xe).
Why not give the rest of the list - comets have LOTS of chemicals: acetaldehyde, acetonitrile, acetylene, benzene, butanamide, chloromethane, ethanethiol, ethylamine, ethylene glycol, formaldehyde, glycine (= an amino acid), magnesium, methanethiol, methylamine, naphthalene, phosphorus, phosphorus oxide, potassium, propylenglycol, silicon, sodium, thioformaldehyde, toluene, and xylene.
Intriguingly, one possible rock sample from a comet is available. "Hypatia" is the nickname for a unique rock found in southwestern Egypt. It is black, hard, lustrous, and diamond-rich. It was recovered from the Libyan Desert Glass strewn field. Libyan Desert glass consists of (usually) yellowish-colored tektites formed during the Oligocene, about 28.5 million years ago. The lack of a crater suggests they may have formed during a bolide airburst, similar to the Tunguska, Siberia event of 1908. "Hypatia" may be a rock sample from that impacting object, which may have been a comet.
So What?
Comets are not only visually appealing, they do have significance in Earth history. Comets have certainly arrived on Earth in the geologic past and they have long been suspected to be an important source of Earth's water. Most comets do not have the same deuterium to hydrogen ratio as Earth's water, but at least one comet has been identified that does have just about the same D/H ratio as seawater.
It's been estimated that comets delivered about 1 to 2% of all water on Earth, plus about 10 to the 17th power kilograms of organic chemicals. About 22% of Earth's atmospheric xenon seems to be cometary in origin.
If you find comets intriguing, but don't have the patience to wait for the next visible example, remember that most meteors ("shooting stars") are interpreted to be dust-sized to pebble-sized particles, most of which are derived from comets (Examples: Comet Encke and Comet Swift-Tuttle).
Imaging telescope: TS APO80
Imaging camera: QSI 660wsg-8
Mount: Orion HDX110 EQ-G
Software: Cyanogen Maxim DL 6 Pro, Pixinsight 1.8, Straton
Astrodon Ha 5nm: 23x900"
Astrodon LRGB: 70x300"
Integration: 11.6 hours
Comet Neowise on 14 July 2020, Burke, Virginia; Canon 60D with Canon 75-200mm lens; single frame.
From Wikipedia
A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena are due to the effects of solar radiation and the solar wind acting upon the nucleus of the comet. Comet nuclei range from a few hundred meters to tens of kilometers across and are composed of loose collections of ice, dust, and small rocky particles. The coma may be up to 15 times Earth's diameter, while the tail may stretch beyond one astronomical unit. If sufficiently bright, a comet may be seen from Earth without the aid of a telescope and may subtend an arc of 30° (60 Moons) across the sky. Comets have been observed and recorded since ancient times by many cultures and religions.
Comets usually have highly eccentric elliptical orbits, and they have a wide range of orbital periods, ranging from several years to potentially several millions of years. Short-period comets originate in the Kuiper belt or its associated scattered disc, which lie beyond the orbit of Neptune. Long-period comets are thought to originate in the Oort cloud, a spherical cloud of icy bodies extending from outside the Kuiper belt to halfway to the nearest star. Long-period comets are set in motion towards the Sun from the Oort cloud by gravitational perturbations caused by passing stars and the galactic tide. Hyperbolic comets may pass once through the inner Solar System before being flung to interstellar space. The appearance of a comet is called an apparition.
Comets are distinguished from asteroids by the presence of an extended, gravitationally unbound atmosphere surrounding their central nucleus. This atmosphere has parts termed the coma (the central part immediately surrounding the nucleus) and the tail (a typically linear section consisting of dust or gas blown out from the coma by the Sun's light pressure or outstreaming solar wind plasma). However, extinct comets that have passed close to the Sun many times have lost nearly all of their volatile ices and dust and may come to resemble small asteroids. Asteroids are thought to have a different origin from comets, having formed inside the orbit of Jupiter rather than in the outer Solar System. The discovery of main-belt comets and active centaur minor planets has blurred the distinction between asteroids and comets. In the early 21st century, the discovery of some minor bodies with long-period comet orbits, but characteristics of inner solar system asteroids, were called Manx comets. They are still classified as comets, such as C/2014 S3 (PANSTARRS). 27 Manx comets were found from 2013 to 2017.
As of November 2021 there are 4584 known comets. However, this represents only a tiny fraction of the total potential comet population, as the reservoir of comet-like bodies in the outer Solar System (in the Oort cloud) is estimated to be one trillion. Roughly one comet per year is visible to the naked eye, though many of those are faint and unspectacular. Particularly bright examples are called "great comets". Comets have been visited by unmanned probes such as the European Space Agency's Rosetta, which became the first to land a robotic spacecraft on a comet, and NASA's Deep Impact, which blasted a crater on Comet Tempel 1 to study its interior.
A comet was mentioned in the Anglo-Saxon Chronicle that allegedly made an appearance in 729 AD.
The word comet derives from the Old English cometa from the Latin comēta or comētēs. That, in turn, is a romanization of the Greek κομήτης 'wearing long hair', and the Oxford English Dictionary notes that the term (ἀστὴρ) κομήτης already meant 'long-haired star, comet' in Greek. Κομήτης was derived from κομᾶν (koman) 'to wear the hair long', which was itself derived from κόμη (komē) 'the hair of the head' and was used to mean 'the tail of a comet'.
The astronomical symbol for comets (represented in Unicode) is U+2604 ☄ COMET, consisting of a small disc with three hairlike extensions.
The core structure of a comet is known as the nucleus. Cometary nuclei are composed of an amalgam of rock, dust, water ice, and frozen carbon dioxide, carbon monoxide, methane, and ammonia. As such, they are popularly described as "dirty snowballs" after Fred Whipple's model. Comets with a higher dust content have been called "icy dirtballs". The term "icy dirtballs" arose after observation of Comet 9P/Tempel 1 collision with an "impactor" probe sent by NASA Deep Impact mission in July 2005. Research conducted in 2014 suggests that comets are like "deep fried ice cream", in that their surfaces are formed of dense crystalline ice mixed with organic compounds, while the interior ice is colder and less dense.
The surface of the nucleus is generally dry, dusty or rocky, suggesting that the ices are hidden beneath a surface crust several metres thick. In addition to the gases already mentioned, the nuclei contain a variety of organic compounds, which may include methanol, hydrogen cyanide, formaldehyde, ethanol, ethane, and perhaps more complex molecules such as long-chain hydrocarbons and amino acids. In 2009, it was confirmed that the amino acid glycine had been found in the comet dust recovered by NASA's Stardust mission. In August 2011, a report, based on NASA studies of meteorites found on Earth, was published suggesting DNA and RNA components (adenine, guanine, and related organic molecules) may have been formed on asteroids and comets.
The outer surfaces of cometary nuclei have a very low albedo, making them among the least reflective objects found in the Solar System. The Giotto space probe found that the nucleus of Halley's Comet (1P/Halley) reflects about four percent of the light that falls on it, and Deep Space 1 discovered that Comet Borrelly's surface reflects less than 3%; by comparison, asphalt reflects seven percent. The dark surface material of the nucleus may consist of complex organic compounds. Solar heating drives off lighter volatile compounds, leaving behind larger organic compounds that tend to be very dark, like tar or crude oil. The low reflectivity of cometary surfaces causes them to absorb the heat that drives their outgassing processes.
Comet nuclei with radii of up to 30 kilometers (19 mi) have been observed, but ascertaining their exact size is difficult. The nucleus of 322P/SOHO is probably only 100–200 meters (330–660 ft) in diameter. A lack of smaller comets being detected despite the increased sensitivity of instruments has led some to suggest that there is a real lack of comets smaller than 100 meters (330 ft) across. Known comets have been estimated to have an average density of 0.6 g/cm3 (0.35 oz/cu in). Because of their low mass, comet nuclei do not become spherical under their own gravity and therefore have irregular shapes.
Roughly six percent of the near-Earth asteroids are thought to be the extinct nuclei of comets that no longer experience outgassing, including 14827 Hypnos and 3552 Don Quixote.
Results from the Rosetta and Philae spacecraft show that the nucleus of 67P/Churyumov–Gerasimenko has no magnetic field, which suggests that magnetism may not have played a role in the early formation of planetesimals.[33][34] Further, the ALICE spectrograph on Rosetta determined that electrons (within 1 km (0.62 mi) above the comet nucleus) produced from photoionization of water molecules by solar radiation, and not photons from the Sun as thought earlier, are responsible for the degradation of water and carbon dioxide molecules released from the comet nucleus into its coma.[35][36] Instruments on the Philae lander found at least sixteen organic compounds at the comet's surface, four of which (acetamide, acetone, methyl isocyanate and propionaldehyde) have been detected for the first time on a comet.[37][38][39]
The streams of dust and gas thus released form a huge and extremely thin atmosphere around the comet called the "coma". The force exerted on the coma by the Sun's radiation pressure and solar wind cause an enormous "tail" to form pointing away from the Sun.[48]
The coma is generally made of water and dust, with water making up to 90% of the volatiles that outflow from the nucleus when the comet is within 3 to 4 astronomical units (450,000,000 to 600,000,000 km; 280,000,000 to 370,000,000 mi) of the Sun.[49] The H2O parent molecule is destroyed primarily through photodissociation and to a much smaller extent photoionization, with the solar wind playing a minor role in the destruction of water compared to photochemistry.[49] Larger dust particles are left along the comet's orbital path whereas smaller particles are pushed away from the Sun into the comet's tail by light pressure.[50]
Although the solid nucleus of comets is generally less than 60 kilometers (37 mi) across, the coma may be thousands or millions of kilometers across, sometimes becoming larger than the Sun.[51] For example, about a month after an outburst in October 2007, comet 17P/Holmes briefly had a tenuous dust atmosphere larger than the Sun.[52] The Great Comet of 1811 also had a coma roughly the diameter of the Sun.[53] Even though the coma can become quite large, its size can decrease about the time it crosses the orbit of Mars around 1.5 astronomical units (220,000,000 km; 140,000,000 mi) from the Sun.[53] At this distance the solar wind becomes strong enough to blow the gas and dust away from the coma, and in doing so enlarging the tail.[53] Ion tails have been observed to extend one astronomical unit (150 million km) or more.[52]
Both the coma and tail are illuminated by the Sun and may become visible when a comet passes through the inner Solar System, the dust reflects sunlight directly while the gases glow from ionisation.[54] Most comets are too faint to be visible without the aid of a telescope, but a few each decade become bright enough to be visible to the naked eye.[55] Occasionally a comet may experience a huge and sudden outburst of gas and dust, during which the size of the coma greatly increases for a period of time. This happened in 2007 to Comet Holmes.[56]
In 1996, comets were found to emit X-rays.[57] This greatly surprised astronomers because X-ray emission is usually associated with very high-temperature bodies. The X-rays are generated by the interaction between comets and the solar wind: when highly charged solar wind ions fly through a cometary atmosphere, they collide with cometary atoms and molecules, "stealing" one or more electrons from the atom in a process called "charge exchange". This exchange or transfer of an electron to the solar wind ion is followed by its de-excitation into the ground state of the ion by the emission of X-rays and far ultraviolet photons.[58]
Bow shocks form as a result of the interaction between the solar wind and the cometary ionosphere, which is created by the ionization of gases in the coma. As the comet approaches the Sun, increasing outgassing rates cause the coma to expand, and the sunlight ionizes gases in the coma. When the solar wind passes through this ion coma, the bow shock appears.
The first observations were made in the 1980s and 1990s as several spacecraft flew by comets 21P/Giacobini–Zinner,[59] 1P/Halley,[60] and 26P/Grigg–Skjellerup.[61] It was then found that the bow shocks at comets are wider and more gradual than the sharp planetary bow shocks seen at, for example, Earth. These observations were all made near perihelion when the bow shocks already were fully developed.
The Rosetta spacecraft observed the bow shock at comet 67P/Churyumov–Gerasimenko at an early stage of bow shock development when the outgassing increased during the comet's journey toward the Sun. This young bow shock was called the "infant bow shock". The infant bow shock is asymmetric and, relative to the distance to the nucleus, wider than fully developed bow shocks.[62]
Typical direction of tails during a comet's orbit near the Sun
In the outer Solar System, comets remain frozen and inactive and are extremely difficult or impossible to detect from Earth due to their small size. Statistical detections of inactive comet nuclei in the Kuiper belt have been reported from observations by the Hubble Space Telescope[63][64] but these detections have been questioned.[65][66] As a comet approaches the inner Solar System, solar radiation causes the volatile materials within the comet to vaporize and stream out of the nucleus, carrying dust away with them.
The streams of dust and gas each form their own distinct tail, pointing in slightly different directions. The tail of dust is left behind in the comet's orbit in such a manner that it often forms a curved tail called the type II or dust tail.[54] At the same time, the ion or type I tail, made of gases, always points directly away from the Sun because this gas is more strongly affected by the solar wind than is dust, following magnetic field lines rather than an orbital trajectory.[67] On occasions—such as when Earth passes through a comet's orbital plane, the antitail, pointing in the opposite direction to the ion and dust tails, may be seen.[68]
The observation of antitails contributed significantly to the discovery of solar wind.[69] The ion tail is formed as a result of the ionization by solar ultra-violet radiation of particles in the coma. Once the particles have been ionized, they attain a net positive electrical charge, which in turn gives rise to an "induced magnetosphere" around the comet. The comet and its induced magnetic field form an obstacle to outward flowing solar wind particles. Because the relative orbital speed of the comet and the solar wind is supersonic, a bow shock is formed upstream of the comet in the flow direction of the solar wind. In this bow shock, large concentrations of cometary ions (called "pick-up ions") congregate and act to "load" the solar magnetic field with plasma, such that the field lines "drape" around the comet forming the ion tail.[70]
If the ion tail loading is sufficient, the magnetic field lines are squeezed together to the point where, at some distance along the ion tail, magnetic reconnection occurs. This leads to a "tail disconnection event".[70] This has been observed on a number of occasions, one notable event being recorded on 20 April 2007, when the ion tail of Encke's Comet was completely severed while the comet passed through a coronal mass ejection. This event was observed by the STEREO space probe.[71]
In 2013, ESA scientists reported that the ionosphere of the planet Venus streams outwards in a manner similar to the ion tail seen streaming from a comet under similar conditions."[72]
Uneven heating can cause newly generated gases to break out of a weak spot on the surface of comet's nucleus, like a geyser.[74] These streams of gas and dust can cause the nucleus to spin, and even split apart.[74] In 2010 it was revealed dry ice (frozen carbon dioxide) can power jets of material flowing out of a comet nucleus.[75] Infrared imaging of Hartley 2 shows such jets exiting and carrying with it dust grains into the coma.[76]
Most comets are small Solar System bodies with elongated elliptical orbits that take them close to the Sun for a part of their orbit and then out into the further reaches of the Solar System for the remainder.[77] Comets are often classified according to the length of their orbital periods: The longer the period the more elongated the ellipse.
Periodic comets or short-period comets are generally defined as those having orbital periods of less than 200 years.[78] They usually orbit more-or-less in the ecliptic plane in the same direction as the planets.[79] Their orbits typically take them out to the region of the outer planets (Jupiter and beyond) at aphelion; for example, the aphelion of Halley's Comet is a little beyond the orbit of Neptune. Comets whose aphelia are near a major planet's orbit are called its "family".[80] Such families are thought to arise from the planet capturing formerly long-period comets into shorter orbits.[81]
At the shorter orbital period extreme, Encke's Comet has an orbit that does not reach the orbit of Jupiter, and is known as an Encke-type comet. Short-period comets with orbital periods less than 20 years and low inclinations (up to 30 degrees) to the ecliptic are called traditional Jupiter-family comets (JFCs).[82][83] Those like Halley, with orbital periods of between 20 and 200 years and inclinations extending from zero to more than 90 degrees, are called Halley-type comets (HTCs).[84][85] As of 2022, 94 HTCs have been observed,[86] compared with 744 identified JFCs.[87]
Recently discovered main-belt comets form a distinct class, orbiting in more circular orbits within the asteroid belt.[88]
Because their elliptical orbits frequently take them close to the giant planets, comets are subject to further gravitational perturbations.[89] Short-period comets have a tendency for their aphelia to coincide with a giant planet's semi-major axis, with the JFCs being the largest group.[83] It is clear that comets coming in from the Oort cloud often have their orbits strongly influenced by the gravity of giant planets as a result of a close encounter. Jupiter is the source of the greatest perturbations, being more than twice as massive as all the other planets combined. These perturbations can deflect long-period comets into shorter orbital periods.[90][91]
Based on their orbital characteristics, short-period comets are thought to originate from the centaurs and the Kuiper belt/scattered disc[92] —a disk of objects in the trans-Neptunian region—whereas the source of long-period comets is thought to be the far more distant spherical Oort cloud (after the Dutch astronomer Jan Hendrik Oort who hypothesized its existence).[93] Vast swarms of comet-like bodies are thought to orbit the Sun in these distant regions in roughly circular orbits. Occasionally the gravitational influence of the outer planets (in the case of Kuiper belt objects) or nearby stars (in the case of Oort cloud objects) may throw one of these bodies into an elliptical orbit that takes it inwards toward the Sun to form a visible comet. Unlike the return of periodic comets, whose orbits have been established by previous observations, the appearance of new comets by this mechanism is unpredictable.[94] When flung into the orbit of the sun, and being continuously dragged towards it, tons of matter are stripped from the comets which greatly influence their lifetime; the more stripped, the shorter they live and vice versa.[95]
Long-period comets have highly eccentric orbits and periods ranging from 200 years to thousands or even millions of years.[96] An eccentricity greater than 1 when near perihelion does not necessarily mean that a comet will leave the Solar System.[97] For example, Comet McNaught had a heliocentric osculating eccentricity of 1.000019 near its perihelion passage epoch in January 2007 but is bound to the Sun with roughly a 92,600-year orbit because the eccentricity drops below 1 as it moves farther from the Sun. The future orbit of a long-period comet is properly obtained when the osculating orbit is computed at an epoch after leaving the planetary region and is calculated with respect to the center of mass of the Solar System. By definition long-period comets remain gravitationally bound to the Sun; those comets that are ejected from the Solar System due to close passes by major planets are no longer properly considered as having "periods". The orbits of long-period comets take them far beyond the outer planets at aphelia, and the plane of their orbits need not lie near the ecliptic. Long-period comets such as C/1999 F1 and C/2017 T2 (PANSTARRS) can have aphelion distances of nearly 70,000 AU (0.34 pc; 1.1 ly) with orbital periods estimated around 6 million years.
Single-apparition or non-periodic comets are similar to long-period comets because they also have parabolic or slightly hyperbolic trajectories[96] when near perihelion in the inner Solar System. However, gravitational perturbations from giant planets cause their orbits to change. Single-apparition comets have a hyperbolic or parabolic osculating orbit which allows them to permanently exit the Solar System after a single pass of the Sun.[98] The Sun's Hill sphere has an unstable maximum boundary of 230,000 AU (1.1 pc; 3.6 ly).[99] Only a few hundred comets have been seen to reach a hyperbolic orbit (e > 1) when near perihelion[100] that using a heliocentric unperturbed two-body best-fit suggests they may escape the Solar System.
As of 2019, only two objects have been discovered with an eccentricity significantly greater than one: 1I/ʻOumuamua and 2I/Borisov, indicating an origin outside the Solar System. While ʻOumuamua, with an eccentricity of about 1.2, showed no optical signs of cometary activity during its passage through the inner Solar System in October 2017, changes to its trajectory—which suggests outgassing—indicate that it is probably a comet.[101] On the other hand, 2I/Borisov, with an estimated eccentricity of about 3.36, has been observed to have the coma feature of comets, and is considered the first detected interstellar comet.[102][103] Comet C/1980 E1 had an orbital period of roughly 7.1 million years before the 1982 perihelion passage, but a 1980 encounter with Jupiter accelerated the comet giving it the largest eccentricity (1.057) of any known solar comet with a reasonable observation arc.[104] Comets not expected to return to the inner Solar System include C/1980 E1, C/2000 U5, C/2001 Q4 (NEAT), C/2009 R1, C/1956 R1, and C/2007 F1 (LONEOS).
Some authorities use the term "periodic comet" to refer to any comet with a periodic orbit (that is, all short-period comets plus all long-period comets),[105] whereas others use it to mean exclusively short-period comets.[96] Similarly, although the literal meaning of "non-periodic comet" is the same as "single-apparition comet", some use it to mean all comets that are not "periodic" in the second sense (that is, to also include all comets with a period greater than 200 years).
Early observations have revealed a few genuinely hyperbolic (i.e. non-periodic) trajectories, but no more than could be accounted for by perturbations from Jupiter. Comets from interstellar space are moving with velocities of the same order as the relative velocities of stars near the Sun (a few tens of km per second). When such objects enter the Solar System, they have a positive specific orbital energy resulting in a positive velocity at infinity ({\displaystyle v_{\infty }\!}{\displaystyle v_{\infty }\!}) and have notably hyperbolic trajectories. A rough calculation shows that there might be four hyperbolic comets per century within Jupiter's orbit, give or take one and perhaps two orders of magnitude.[106]
The Oort cloud is thought to occupy a vast space starting from between 2,000 and 5,000 AU (0.03 and 0.08 ly)[108] to as far as 50,000 AU (0.79 ly)[84] from the Sun. This cloud encases the celestial bodies that start at the middle of our solar system—the sun, all the way to outer limits of the Kuiper Belt. The Oort cloud consists of viable materials necessary for the creation of celestial bodies. The planets we have today, exist only because of the planetesimals (chunks of leftover space that assisted in the creation of planets) that were condensed and formed by the gravity of the sun. The eccentric made from these trapped planetesimals is why the Oort Cloud even exists.[109] Some estimates place the outer edge at between 100,000 and 200,000 AU (1.58 and 3.16 ly).[108] The region can be subdivided into a spherical outer Oort cloud of 20,000–50,000 AU (0.32–0.79 ly), and a doughnut-shaped inner cloud, the Hills cloud, of 2,000–20,000 AU (0.03–0.32 ly).[110] The outer cloud is only weakly bound to the Sun and supplies the long-period (and possibly Halley-type) comets that fall to inside the orbit of Neptune.[84] The inner Oort cloud is also known as the Hills cloud, named after J. G. Hills, who proposed its existence in 1981.[111] Models predict that the inner cloud should have tens or hundreds of times as many cometary nuclei as the outer halo;[111][112][113] it is seen as a possible source of new comets that resupply the relatively tenuous outer cloud as the latter's numbers are gradually depleted. The Hills cloud explains the continued existence of the Oort cloud after billions of years.[114]
Exocomets beyond the Solar System have also been detected and may be common in the Milky Way.[115] The first exocomet system detected was around Beta Pictoris, a very young A-type main-sequence star, in 1987.[116][117] A total of 11 such exocomet systems have been identified as of 2013, using the absorption spectrum caused by the large clouds of gas emitted by comets when passing close to their star.[115][116] For ten years the Kepler space telescope was responsible for searching for planets and other forms outside of the solar system. The first transiting exocomets were found in February 2018 by a group consisting of professional astronomers and citizen scientists in light curves recorded by the Kepler Space Telescope.[118][119] After Kepler Space Telescope retired in October 2018, a new telescope called TESS Telescope has taken over Kepler's mission. Since the launch of TESS, astronomers have discovered the transits of comets around the star Beta Pictoris using a light curve from TESS.[120][121] Since TESS has taken over, astronomers have since been able to better distinguish exocomets with the spectroscopic method. New planets are detected by the white light curve method which is viewed as a symmetrical dip in the charts readings when a planet overshadows its parent star. However, after further evaluation of these light curves, it has been discovered that the asymmetrical patterns of the dips presented are caused by the tail of a comet or of hundreds of comets.[122]
...he Sun, outgassing of its icy components also releases solid debris too large to be swept away by radiation pressure and the solar wind.[123] If Earth's orbit sends it through that trail of debris, which is composed mostly of fine grains of rocky material, there is likely to be a meteor shower as Earth passes through. Denser trails of debris produce quick but intense meteor showers and less dense trails create longer but less intense showers. Typically, the density of the debris trail is related to how long ago the parent comet released the material.[124][125] The Perseid meteor shower, for example, occurs every year between 9 and 13 August, when Earth passes through the orbit of Comet Swift–Tuttle. Halley's Comet is the source of the Orionid shower in October.[126][127]
Many comets and asteroids collided with Earth in its early stages. Many scientists think that comets bombarding the young Earth about 4 billion years ago brought the vast quantities of water that now fill Earth's oceans, or at least a significant portion of it. Others have cast doubt on this idea.[128] The detection of organic molecules, including polycyclic aromatic hydrocarbons,[18] in significant quantities in comets has led to speculation that comets or meteorites may have brought the precursors of life—or even life itself—to Earth.[129] In 2013 it was suggested that impacts between rocky and icy surfaces, such as comets, had the potential to create the amino acids that make up proteins through shock synthesis.[130] The speed at which the comets entered the atmosphere, combined with the magnitude of energy created after initial contact, allowed smaller molecules to condense into the larger macro-molecules that served as the foundation for life.[131] In 2015, scientists found significant amounts of molecular oxygen in the outgassings of comet 67P, suggesting that the molecule may occur more often than had been thought, and thus less an indicator of life as has been supposed.[132]
It is suspected that comet impacts have, over long timescales, also delivered significant quantities of water to Earth's Moon, some of which may have survived as lunar ice.[133] Comet and meteoroid impacts are also thought to be responsible for the existence of tektites and australites.[134]
Fear of comets as acts of God and signs of impending doom was highest in Europe from AD 1200 to 1650.[135] The year after the Great Comet of 1618, for example, Gotthard Arthusius published a pamphlet stating that it was a sign that the Day of Judgment was near.[136] He listed ten pages of comet-related disasters, including "earthquakes, floods, changes in river courses, hail storms, hot and dry weather, poor harvests, epidemics, war and treason and high prices".[135]
By 1700 most scholars concluded that such events occurred whether a comet was seen or not. Using Edmond Halley's records of comet sightings, however, William Whiston in 1711 wrote that the Great Comet of 1680 had a periodicity of 574 years and was responsible for the worldwide flood in the Book of Genesis, by pouring water on Earth. His announcement revived for another century fear of comets, now as direct threats to the world instead of signs of disasters.[135] Spectroscopic analysis in 1910 found the toxic gas cyanogen in the tail of Halley's Comet,[137] causing panicked buying of gas masks and quack "anti-comet pills" and "anti-comet umbrellas" by the public.[138]
If a comet is traveling fast enough, it may leave the Solar System. Such comets follow the open path of a hyperbola, and as such, they are called hyperbolic comets. Solar comets are only known to be ejected by interacting with another object in the Solar System, such as Jupiter.[139] An example of this is Comet C/1980 E1, which was shifted from an orbit of 7.1 million years around the Sun, to a hyperbolic trajectory, after a 1980 close pass by the planet Jupiter.[140] Interstellar comets such as 1I/ʻOumuamua and 2I/Borisov never orbited the Sun and therefore do not require a 3rd-body interaction to be ejected from the Solar System.
Jupiter-family comets and long-period comets appear to follow very different fading laws. The JFCs are active over a lifetime of about 10,000 years or ~1,000 orbits whereas long-period comets fade much faster. Only 10% of the long-period comets survive more than 50 passages to small perihelion and only 1% of them survive more than 2,000 passages.[32] Eventually most of the volatile material contained in a comet nucleus evaporates, and the comet becomes a small, dark, inert lump of rock or rubble that can resemble an asteroid.[141] Some asteroids in elliptical orbits are now identified as extinct comets.[142][143][144][145] Roughly six percent of the near-Earth asteroids are thought to be extinct comet nuclei.[32]
The nucleus of some comets may be fragile, a conclusion supported by the observation of comets splitting apart.[146] A significant cometary disruption was that of Comet Shoemaker–Levy 9, which was discovered in 1993. A close encounter in July 1992 had broken it into pieces, and over a period of six days in July 1994, these pieces fell into Jupiter's atmosphere—the first time astronomers had observed a collision between two objects in the Solar System.[147][148] Other splitting comets include 3D/Biela in 1846 and 73P/Schwassmann–Wachmann from 1995 to 2006.[149] Greek historian Ephorus reported that a comet split apart as far back as the winter of 372–373 BC.[150] Comets are suspected of splitting due to thermal stress, internal gas pressure, or impact.[151]
Comets 42P/Neujmin and 53P/Van Biesbroeck appear to be fragments of a parent comet. Numerical integrations have shown that both comets had a rather close approach to Jupiter in January 1850, and that, before 1850, the two orbits were nearly identical.[152]
Some comets have been observed to break up during their perihelion passage, including great comets West and Ikeya–Seki. Biela's Comet was one significant example when it broke into two pieces during its passage through the perihelion in 1846. These two comets were seen separately in 1852, but never again afterward. Instead, spectacular meteor showers were seen in 1872 and 1885 when the comet should have been visible. A minor meteor shower, the Andromedids, occurs annually in November, and it is caused when Earth crosses the orbit of Biela's Comet.[153]
Some comets meet a more spectacular end – either falling into the Sun[154] or smashing into a planet or other body. Collisions between comets and planets or moons were common in the early Solar System: some of the many craters on the Moon, for example, may have been caused by comets. A recent collision of a comet with a planet occurred in July 1994 when Comet Shoemaker–Levy 9 broke up into pieces and collided with Jupiter.[155]
The names given to comets have followed several different conventions over the past two centuries. Prior to the early 20th century, most comets were simply referred to by the year when they appeared, sometimes with additional adjectives for particularly bright comets; thus, the "Great Comet of 1680", the "Great Comet of 1882", and the "Great January Comet of 1910".
After Edmond Halley demonstrated that the comets of 1531, 1607, and 1682 were the same body and successfully predicted its return in 1759 by calculating its orbit, that comet became known as Halley's Comet.[157] Similarly, the second and third known periodic comets, Encke's Comet[158] and Biela's Comet,[159] were named after the astronomers who calculated their orbits rather than their original discoverers. Later, periodic comets were usually named after their discoverers, but comets that had appeared only once continued to be referred to by the year of their appearance.[160]
In the early 20th century, the convention of naming comets after their discoverers became common, and this remains so today. A comet can be named after its discoverers or an instrument or program that helped to find it.[160] For example, in 2019, astronomer Gennady Borisov observed a comet that appeared to have originated outside of the solar system; the comet was named C/2019 Q4 (Borisov) after him.
From ancient sources, such as Chinese oracle bones, it is known that comets have been noticed by humans for millennia.[161] Until the sixteenth century, comets were usually considered bad omens of deaths of kings or noble men, or coming catastrophes, or even interpreted as attacks by heavenly beings against terrestrial inhabitants.[162][163]
Aristotle (384–322 BC) was the first known scientist to utilize various theories and observational facts to employ a consistent, structured cosmological theory of comets. He believed that comets were atmospheric phenomena, due to the fact that they could appear outside of the zodiac and vary in brightness over the course of a few days. Aristotle's cometary theory arose from his observations and cosmological theory that everything in the cosmos is arranged in a distinct configuration.[164] Part of this configuration was a clear separation between the celestial and terrestrial, believing comets to be strictly associated with the latter. According to Aristotle, comets must be within the sphere of the moon and clearly separated from the heavens. Also in the 4th century BC, Apollonius of Myndus supported the idea that comets moved like the planets.[165] Aristotelian theory on comets continued to be widely accepted throughout the Middle Ages, despite several discoveries from various individuals challenging aspects of it.[166]
In the 1st century AD, Seneca the Younger questioned Aristotle's logic concerning comets. Because of their regular movement and imperviousness to wind, they cannot be atmospheric,[167] and are more permanent than suggested by their brief flashes across the sky.[a] He pointed out that only the tails are transparent and thus cloudlike, and argued that there is no reason to confine their orbits to the zodiac.[167] In criticizing Apollonius of Myndus, Seneca argues, "A comet cuts through the upper regions of the universe and then finally becomes visible when it reaches the lowest point of its orbit."[168] While Seneca did not author a substantial theory of his own,[169] his arguments would spark much debate among Aristotle's critics in the 16th and 17th centuries.[166][b]
Also in the 1st century, Pliny the Elder believed that comets were connected with political unrest and death.[171] Pliny observed comets as "human like", often describing their tails with "long hair" or "long beard".[172] His system for classifying comets according to their color and shape was used for centuries.[173]
In India, by the 6th century astronomers believed that comets were celestial bodies that re-appeared periodically. This was the view expressed in the 6th century by the astronomers Varāhamihira and Bhadrabahu, and the 10th-century astronomer Bhaṭṭotpala listed the names and estimated periods of certain comets, but it is not known how these figures were calculated or how accurate they were.[174]
According to Norse mythology, comets were actually a part of the Giant Ymir's skull. According to the tale, Odin and his brothers slew Ymir and set about constructing the world (Earth) from his corpse. They fashioned the oceans from his blood, the soil from his skin and muscles, vegetation from his hair, clouds from his brains, and the sky from his skull. Four dwarves, corresponding to the four cardinal points, held Ymir's skull aloft above the earth. Following this tale, comets in the sky, as believed by the Norse, were flakes of Ymir's skull falling from the sky and then disintegrating.[176]
In 1301, the Italian painter Giotto was the first person to accurately and anatomically portray a comet. In his work Adoration of the Magi, Giotto's depiction of Halley's Comet in the place of the Star of Bethlehem would go unmatched in accuracy until the 19th century and be bested only with the invention of photography.[175]
Astrological interpretations of comets proceeded to take precedence clear into the 15th century, despite the presence of modern scientific astronomy beginning to take root. Comets continued to forewarn of disaster, as seen in the Luzerner Schilling chronicles and in the warnings of Pope Callixtus III.[175] In 1578, German Lutheran bishop Andreas Celichius defined comets as "the thick smoke of human sins ... kindled by the hot and fiery anger of the Supreme Heavenly Judge". The next year, Andreas Dudith stated that "If comets were caused by the sins of mortals, they would never be absent from the sky."[177]
Scientific approach
Crude attempts at a parallax measurement of Halley's Comet were made in 1456, but were erroneous.[178] Regiomontanus was the first to attempt to calculate diurnal parallax by observing the great comet of 1472. His predictions were not very accurate, but they were conducted in the hopes of estimating the distance of a comet from the Earth.[173]
In the 16th century, Tycho Brahe and Michael Maestlin demonstrated that comets must exist outside of Earth's atmosphere by measuring the parallax of the Great Comet of 1577.[179] Within the precision of the measurements, this implied the comet must be at least four times more distant than from Earth to the Moon.[180][181] Based on observations in 1664, Giovanni Borelli recorded the longitudes and latitudes of comets that he observed, and suggested that cometary orbits may be parabolic.[182] Galileo Galilei, one of the most renowned astronomers to date, even attempted writings on comets in The Assayer. He rejected Brahe's theories on the parallax of comets and claimed that they may be a mere optical illusion. Intrigued as early scientists were about the nature of comets, Galileo could not help but throw about his own theories despite little personal observation.[173] Maestlin's student Johannes Kepler responded to these unjust criticisms in his work Hyperaspistes. Jakob Bernoulli published another attempt to explain comets (Conamen Novi Systematis Cometarum) in 1682.
Also occurring in the early modern period was the study of comets and their astrological significance in medical disciplines. Many healers of this time considered medicine and astronomy to be inter-disciplinary and employed their knowledge of comets and other astrological signs for diagnosing and treating patients.[183]
Isaac Newton, in his Principia Mathematica of 1687, proved that an object moving under the influence of gravity by an inverse square law must trace out an orbit shaped like one of the conic sections, and he demonstrated how to fit a comet's path through the sky to a parabolic orbit, using the comet of 1680 as an example.[184] He describes comets as compact and durable solid bodies moving in oblique orbit and their tails as thin streams of vapor emitted by their nuclei, ignited or heated by the Sun. He suspected that comets were the origin of the life-supporting component of air.[185] He also pointed out that comets usually appear near the Sun, and therefore most likely orbit it.[167] On their luminosity, he stated, "The comets shine by the Sun's light, which they reflect," with their tails illuminated by "the Sun's light reflected by a smoke arising from [the coma]".[167]
In 1705, Edmond Halley (1656–1742) applied Newton's method to 23 cometary apparitions that had occurred between 1337 and 1698. He noted that three of these, the comets of 1531, 1607, and 1682, had very similar orbital elements, and he was further able to account for the slight differences in their orbits in terms of gravitational perturbation caused by Jupiter and Saturn. Confident that these three apparitions had been three appearances of the same comet, he predicted that it would appear again in 1758–9.[186] Halley's predicted return date was later refined by a team of three French mathematicians: Alexis Clairaut, Joseph Lalande, and Nicole-Reine Lepaute, who predicted the date of the comet's 1759 perihelion to within one month's accuracy.[187][188] When the comet returned as predicted, it became known as Halley's Comet.[189]
As early as the 18th century, some scientists had made correct hypotheses as to comets' physical composition. In 1755, Immanuel Kant hypothesized in his Universal Natural History that comets were condensed from "primitive matter" beyond the known planets, which is "feebly moved" by gravity, then orbit at arbitrary inclinations, and are partially vaporized by the Sun's heat as they near perihelion.[191] In 1836, the German mathematician Friedrich Wilhelm Bessel, after observing streams of vapor during the appearance of Halley's Comet in 1835, proposed that the jet forces of evaporating material could be great enough to significantly alter a comet's orbit, and he argued that the non-gravitational movements of Encke's Comet resulted from this phenomenon.[192]
In the 19th century, the Astronomical Observatory of Padova was an epicenter in the observational study of comets. Led by Giovanni Santini (1787–1877) and followed by Giuseppe Lorenzoni (1843–1914), this observatory was devoted to classical astronomy, mainly to the new comets and planets orbit calculation, with the goal of compiling a catalog of almost ten thousand stars. Situated in the Northern portion of Italy, observations from this observatory were key in establishing important geodetic, geographic, and astronomical calculations, such as the difference of longitude between Milan and Padua as well as Padua to Fiume.[193] In addition to these geographic observations, correspondence within the observatory, particularly between Santini and another astronomer Giuseppe Toaldo, about the importance of comet and planetary orbital observations.[194]
In 1950, Fred Lawrence Whipple proposed that rather than being rocky objects containing some ice, comets were icy objects containing some dust and rock.[195] This "dirty snowball" model soon became accepted and appeared to be supported by the observations of an armada of spacecraft (including the European Space Agency's Giotto probe and the Soviet Union's Vega 1 and Vega 2) that flew through the coma of Halley's Comet in 1986, photographed the nucleus, and observed jets of evaporating material.[196]
On 22 January 2014, ESA scientists reported the detection, for the first definitive time, of water vapor on the dwarf planet Ceres, the largest object in the asteroid belt.[197] The detection was made by using the far-infrared abilities of the Herschel Space Observatory.[198] The finding is unexpected because comets, not asteroids, are typically considered to "sprout jets and plumes". According to one of the scientists, "The lines are becoming more and more blurred between comets and asteroids."[198] On 11 August 2014, astronomers released studies, using the Atacama Large Millimeter/Submillimeter Array (ALMA) for the first time, that detailed the distribution of HCN, HNC, H2CO, and dust inside the comae of comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON).[199][200]
Debate continues about how much ice is in a comet. In 2001, the Deep Space 1 spacecraft obtained high-resolution images of the surface of Comet Borrelly. It was found that the surface of comet Borrelly is hot and dry, with a temperature of between 26 to 71 °C (79 to 160 °F), and extremely dark, suggesting that the ice has been removed by solar heating and maturation, or is hidden by the soot-like material that covers Borrelly. In July 2005, the Deep Impact probe blasted a crater on Comet Tempel 1 to study its interior. The mission yielded results suggesting that the majority of a comet's water ice is below the surface and that these reservoirs feed the jets of vaporized water that form the coma of Tempel 1. Renamed EPOXI, it made a flyby of Comet Hartley 2 on 4 November 2010.
In 2007, the Ulysses probe unexpectedly passed through the tail of the comet C/2006 P1 (McNaught) which was discovered in 2006. Ulysses was launched in 1990 and the intended mission was for Ulysses to orbit around the sun for further study at all latitudes.
Data from the Stardust mission show that materials retrieved from the tail of Wild 2 were crystalline and could only have been "born in fire", at extremely high temperatures of over 1,000 °C (1,830 °F). Although comets formed in the outer Solar System, radial mixing of material during the early formation of the Solar System is thought to have redistributed material throughout the proto-planetary disk. As a result, comets also contain crystalline grains that formed in the early, hot inner Solar System. This is seen in comet spectra as well as in sample return missions. More recent still, the materials retrieved demonstrate that the "comet dust resembles asteroid materials". These new results have forced scientists to rethink the nature of comets and their distinction from asteroids.
The Rosetta probe orbited Comet Churyumov–Gerasimenko. On 12 November 2014, its lander Philae successfully landed on the comet's surface, the first time a spacecraft has ever landed on such an object.
Approximately once a decade, a comet becomes bright enough to be noticed by a casual observer, leading such comets to be designated as great comets. Predicting whether a comet will become a great comet is notoriously difficult, as many factors may cause a comet's brightness to depart drastically from predictions. Broadly speaking, if a comet has a large and active nucleus, will pass close to the Sun, and is not obscured by the Sun as seen from Earth when at its brightest, it has a chance of becoming a great comet. However, Comet Kohoutek in 1973 fulfilled all the criteria and was expected to become spectacular but failed to do so.[210] Comet West, which appeared three years later, had much lower expectations but became an extremely impressive comet.
The Great Comet of 1577 is a well-known example of a great comet. It passed near Earth as a non-periodic comet and was seen by many, including well-known astronomers Tycho Brahe and Taqi ad-Din. Observations of this comet led to several significant findings regarding cometary science, especially for Brahe.
The late 20th century saw a lengthy gap without the appearance of any great comets, followed by the arrival of two in quick succession—Comet Hyakutake in 1996, followed by Hale–Bopp, which reached maximum brightness in 1997 having been discovered two years earlier. The first great comet of the 21st century was C/2006 P1 (McNaught), which became visible to naked eye observers in January 2007. It was the brightest in over 40 years.
A sun-grazing comet is a comet that passes extremely close to the Sun at perihelion, generally within a few million kilometers. Although small sungrazers can be completely evaporated during such a close approach to the Sun, larger sungrazers can survive many perihelion passages. However, the strong tidal forces they experience often lead to their fragmentation.
About 90% of the sungrazers observed with SOHO are members of the Kreutz group, which all originate from one giant comet that broke up into many smaller comets during its first passage through the inner Solar System. The remainder contains some sporadic sungrazers, but four other related groups of comets have been identified among them: the Kracht, Kracht 2a, Marsden, and Meyer groups. The Marsden and Kracht groups both appear to be related to Comet 96P/Machholz, which is also the parent of two meteor streams, the Quadrantids and the Arietids.
Of the thousands of known comets, some exhibit unusual properties. Comet Encke (2P/Encke) orbits from outside the asteroid belt to just inside the orbit of the planet Mercury whereas the Comet 29P/Schwassmann–Wachmann currently travels in a nearly circular orbit entirely between the orbits of Jupiter and Saturn. 2060 Chiron, whose unstable orbit is between Saturn and Uranus, was originally classified as an asteroid until a faint coma was noticed. Similarly, Comet Shoemaker–Levy 2 was originally designated asteroid 1990 UL3.
The largest known periodic comet is 95P/Chiron at 200 km in diameter that comes to perihelion every 50 years just inside of Saturn's orbit at 8 AU. The largest known Oort cloud comet is suspected of being Comet Bernardinelli-Bernstein at ≈150 km that will not come to perihelion until January 2031 just outside of Saturn's orbit at 11 AU. The Comet of 1729 is estimated to have been ≈100 km in diameter and came to perihelion inside of Jupiter's orbit at 4 AU.
Centaurs typically behave with characteristics of both asteroids and comets.[220] Centaurs can be classified as comets such as 60558 Echeclus, and 166P/NEAT. 166P/NEAT was discovered while it exhibited a coma, and so is classified as a comet despite its orbit, and 60558 Echeclus was discovered without a coma but later became active, and was then classified as both a comet and an asteroid (174P/Echeclus). One plan for Cassini involved sending it to a centaur, but NASA decided to destroy it instead.
A comet may be discovered photographically using a wide-field telescope or visually with binoculars. However, even without access to optical equipment, it is still possible for the amateur astronomer to discover a sun-grazing comet online by downloading images accumulated by some satellite observatories such as SOHO. SOHO's 2000th comet was discovered by Polish amateur astronomer Michał Kusiak on 26 December 2010 and both discoverers of Hale–Bopp used amateur equipment (although Hale was not an amateur).
A number of periodic comets discovered in earlier decades or previous centuries are now lost comets. Their orbits were never known well enough to predict future appearances or the comets have disintegrated. However, occasionally a "new" comet is discovered, and calculation of its orbit shows it to be an old "lost" comet. An example is Comet 11P/Tempel–Swift–LINEAR, discovered in 1869 but unobservable after 1908 because of perturbations by Jupiter. It was not found again until accidentally rediscovered by LINEAR in 2001. There are at least 18 comets that fit this category.
The depiction of comets in popular culture is firmly rooted in the long Western tradition of seeing comets as harbingers of doom and as omens of world-altering change. Halley's Comet alone has caused a slew of sensationalist publications of all sorts at each of its reappearances. It was especially noted that the birth and death of some notable persons coincided with separate appearances of the comet, such as with writers Mark Twain (who correctly speculated that he'd "go out with the comet" in 1910) and Eudora Welty, to whose life Mary Chapin Carpenter dedicated the song "Halley Came to Jackson".
In times past, bright comets often inspired panic and hysteria in the general population, being thought of as bad omens. More recently, during the passage of Halley's Comet in 1910, Earth passed through the comet's tail, and erroneous newspaper reports inspired a fear that cyanogen in the tail might poison millions, whereas the appearance of Comet Hale–Bopp in 1997 triggered the mass suicide of the Heaven's Gate cult.
Over the roughly hour-long duration of this photo, as the icy comet raced toward the sun, it moved about a tenth of a degree relative to the background stars. So aligning the 42 frames (each a 30 sec exposure at ISO 3200) to keep the comet fixed caused the stars to make trails.
"Among the materials released by solar heating are cyanogen and diatomic carbon. Both are colorless gases that fluoresce a delicious candy-apple green when excited by energetic ultraviolet light in sunlight." -- Bob King, Universe Today.
"Merry Christmas to everyone!"
My small photo show is now on!
If you are close to Sapporo, please stop by.
札幌のカフェで小さな個展を開催しています。今日が最終日です。お近くの方はどうぞお立ち寄りください。
nostalgia cyanogen 祖父との対話
cafe&gallery Rabbit On Sapporo
ある時 母から古い封とうを受け取りました
のぞいてみると わたしが生まれて間もなく亡くなった
祖父の手紙と写真が入っていました
わたしの手にわたってからは
引き出しの中にしばらく置き去りにされていて
誰にも読み返されることはありませんでした
One day, I was handed an old envelope from my mother.
I looked into it, there were the letters and photographs of my Grand
father who passed away when I was two years old.
Those letters and photographs had never red or looked again by anyone
else, because they were left behind the drawer of my desk since then.
photo left & right:Iwate tono arakawa field, pinhole 2006 summer by mistubako
Canon EOS 50D, Hooded Canon EF 85mm ƒ/1.8 USM prime @ ƒ/1.8, ISO 12800, 2 sec. exposure with 2 sec. shutter delay, fixed (non-tracking) tripod, 31 exposures stacked in WinImages running under Parallels, cropped and converted to JPEG in Aperture.
This comet's green color comes from a type of carbon and cyanogen, a poisonous gas.
It's been overcast here for weeks now, and it's been a very frustrating time for astro shooting. Last night there were no clouds here, but it was very foggy, and I was just beside myself, because the window of visibility for this beautiful green comet may be very short ; also, once gone, it'll really be gone — it's about to achieve escape velocity for the solar system and take off for deep space... it won't be by again. Literally a once in a lifetime chance to make the catch!
So I called the national weather service office here in Glasgow, and asked them about visibility for 4AM, which was about the optimum time for this comet this morning (it is highest above the southern horizon at that time, about 40°.) The NWS staff said that if I went south about fifty miles into McCone county, I should come out from under the fog, and that the clouds coming north should not quite be far enough along to obscure my view.
So [Deb] and I hopped into our car and crept through dense fog for several hours until we were south on highway 24 about fifty miles, and sure enough, the fog broke. Below the comet, clouds were piling up at an amazing rate, but I had enough time to shoot 31, two-second frames before the clouds made continuing impossible.
Driving back, I was cheerful, and [Deb] was supportive, though she probably had most of her attention on trying to spot deer so the night wouldn't become more of an adventure than we really wanted. I had to go into 4-wheel drive a couple of times where snow had drifted over the highway just below Fort Peck, and we slowed to avoid quite a few deer. All in all a hundred miles of mostly foggy driving for about a minute of shooting, but I did get the comet, and [Deb] has another "crazy Ben" story to tell. :o)
My small photo show is now on!
If you are close to Sapporo, please stop by.
I will upload one photo a day.
札幌のカフェで小さな個展を開催しています。
お近くの方はどうぞお立ち寄りください。
cafe&gallery Rabbit On Sapporo
ある時 母から古い封とうを受け取りました
のぞいてみると わたしが生まれて間もなく亡くなった
祖父の手紙と写真が入っていました
わたしの手にわたってからは
引き出しの中にしばらく置き去りにされていて
誰にも読み返されることはありませんでした
One day, I was handed an old envelope from my mother.
I looked into it, there were the letters and photographs of my Grand
father who passed away when I was two years old.
Those letters and photographs had never red or looked again by anyone
else, because they were left behind the drawer of my desk since then.
photo left:daughter Yuhoko at 4years old, taken by Grand pa Matsuo in 1937.
photo right:Hakoishi village in Iwate old school taken by mistubako in 2006 spring
My small photo show is now on!
If you are close to Sapporo, please stop by.
札幌のカフェで小さな個展を開催しています。
お近くの方はどうぞお立ち寄りください。
cafe&gallery Rabbit On Sapporo
ある時 母から古い封とうを受け取りました
のぞいてみると わたしが生まれて間もなく亡くなった
祖父の手紙と写真が入っていました
わたしの手にわたってからは
引き出しの中にしばらく置き去りにされていて
誰にも読み返されることはありませんでした
One day, I was handed an old envelope from my mother.
I looked into it, there were the letters and photographs of my Grand
father who passed away when I was two years old.
Those letters and photographs had never red or looked again by anyone
else, because they were left behind the drawer of my desk since then.
Photo left:Grand Pa Matsuo, in Manchuria, around1930-40.
Photo right:Yashima moor Nagano, pinhole 2006 fall by mistubako
16 exposiciones de 90 segundos con teleobjetivo 200 mm f/1.8, ISO 1.600, cámara Canon EOS 6D modificada. Centro, (AR): 19h 38m 39s, (Dec.): +23° 21' 50”. Campo angular: 12.1º x 7.9º. Escala: 6.9 arcsec/pixel.
αSge, α Sagittae, 5 Sagittae, Sham o Alsahm. Es una estrella de magnitud aparente +4,37. A pesar de tener la denominación de Bayer «Alfa», es sólo la tercera más brillante de la constelación de Sagitta, la Flecha. Su nombre es de origen árabe y significa «flecha», y antes fue utilizado para designar a toda la constelación. Curiosamente, las otras dos estrellas más brillantes de Sagitta, γ Sagittae y δ Sagittae, no tienen nombre propio.
Sham es una estrella de temperatura similar al Sol —unos 5.400 K— si bien, al ser una gigante luminosa de tipo espectral G1II, su radio es unas 20 veces más grande que el radio solar. Consecuentemente, brilla con una luminosidad equivalente a 340 soles. Su estado evolutivo es incierto, estando situada en una región del diagrama de Hertzsprung-Russell, conocida como «la Laguna de Hertzsprung», en donde se encuentran muy pocas estrellas. Su composición química difiere de la del Sol, mostrando un elevado contenido de nitrógeno, lo que implica que las capas superficiales han sido contaminadas por subproductos procedentes de la fusión nuclear de helio. En cambio, su abundancia relativa de hierro es muy parecida a la solar.3 Asimismo, aún teniendo las características propias de una estrella variable cefeida, no se comporta como tal. Tiene una masa aproximadamente 4 veces mayor que la solar y su edad se estima en 150 millones de años. Se encuentra a 475 años luz.
βSge, Beta Sagittae, 6 Sagittae, HD 185958. Es una estrella de magnitud aparente +4,39. A pesar de tener la denominación de Bayer «Beta», es sólo la cuarta estrella más brillante de la constelación de Sagitta, la Flecha. Se encuentra a 440 años luz.
Beta Sagittae es una gigante amarilla de tipo espectral G8IIIa con una temperatura superficial de 4.860 K. Tiene una luminosidad 429 veces mayor que la del Sol pero su tamaño es incierto; mientras que de acuerdo a la teoría de estructura estelar su radio es 29 veces más grande que el radio solar, la medida directa de su diámetro angular conduce a un valor 64 veces mayor que el del Sol. Gira sobre sí misma con una velocidad de rotación igual o mayor de 9 km/s, pudiendo ser su período de rotación de hasta 160 días. Tiene una masa 4,3 veces mayor que la masa solar y su edad se estima en 130 millones de años.
Beta Sagittae comenzó su vida como una caliente estrella de la secuencia principal de tipo B medio. Se piensa que en la actualidad fusiona helio en carbono y oxígeno. Tiene una metalicidad muy parecida a la solar, pero muestra sin embargo, un enriquecimiento de cianógeno (CN), molécula abundante en la atmósfera de gigantes frías. Ello sugiere que el nitrógeno ha ascendido por convección desde el núcleo hasta la superficie.
NGC 6802. Es un cúmulo estelar abierto en la constelación de Vulpecula. El objeto fue descubierto por el astrónomo William Herschel en 1784, usando un telescopio reflector de 18,6 pulgadas. Debido a su moderada magnitud aparente (+8,8), es visible sólo con telescopios aficionados de cierta potencia. Se encuentra a unos 3.700 años luz.
Coathanger, en español conocido como La Percha, Collinder 399 (Cr 399). Es una agrupación aleatoria de estrellas o asterismo, ubicada en la constelación de Vulpecula cerca de la frontera con Sagitta. El cúmulo es también conocido como el Cúmulo de Al Sufi o el Cúmulo de Brocchi. Los miembros más brillantes de este cúmulo de estrellas forman el asterismo conocido como La Percha.
El estatus de este grupo como cúmulo de estrellas ha cambiado en los últimos años. El grupo fue considerado como un cúmulo auténtico durante la mayor parte del siglo XX. Sin embargo, al observar una variedad de criterios, un estudio en 1970 concluyó que solo 6 de las estrellas más brillantes formaban un grupo real. Varios estudios independientes desde 1998 han determinado que este objeto no es un verdadero grupo, sino más bien un alineamiento casual de estrellas. Estos estudios recientes han basado sus hallazgos en mediciones mejoradas de paralaje y movimiento proporcionados por el satélite Hipparcos que se publicaron por primera vez en 1997.
NGC 6793, OCL 115. Es un cúmulo estelar abierto en la constelación de Vulpecula. Fue descubierto por William Herschel en 1789. Se encuentra a unos 3.600 años luz.
NGC 6820 y NGC 6823. Es una nebulosa de emisión junto al cúmulo estelar abierto NGC 6823 en Vulpecula. La nebulosa de reflexión y el cúmulo están incrustados en una gran nebulosa de emisión débil llamada Sh 2-86. Toda el área de nebulosidad a menudo se conoce como NGC 6820.
M27, la nebulosa de la Haltera, se encuentra tres grados al este y α Vulpeculae tres grados al oeste.
El cúmulo central NGC 6823 tiene aproximadamente 50 años luz de diámetro y se encuentra a unos 6.000 años luz. El centro del cúmulo se formó hace unos dos millones de años y está dominado por unas brillantes y jóvenes estrellas azules. Forma el núcleo de la asociación estelar Vulpecula OB1.
Albireo, β Cyg, β Cygni, 6 Cygni. Es una estrella en la constelación del Cisne. Aunque tiene la denominación de Bayer "Beta" —segunda letra del alfabeto griego—, ocupa el quinto lugar en cuanto a brillo dentro de la constelación, siendo superada por Deneb (α Cygni), Sadr (γ Cygni), Giennah (ε Cygni) y δ Cygni. Situada en la cabeza del cisne, Albireo es también conocida como "estrella del pico". Junto a las estrellas arriba mencionadas, forma el asterismo de la Cruz del Norte.
Aunque a simple vista Albireo aparece como una estrella simple, con un telescopio o unos prismáticos se resuelve en una estrella doble. De las dos componentes, separadas 35 segundos de arco, una es amarilla y tiene magnitud aparente +3,05 —Albireo A—, mientras que la otra es azul y de magnitud +5,12 —Albireo B—, ofreciendo un inmejorable contraste entre las estrellas dobles del cielo nocturno. No se sabe con certeza si Albireo A y Albireo B forman una verdadero sistema binario; si realmente están gravitacionalmente unidas, su período orbital es de al menos 75.000 años. Albireo se encuentra a 385 años luz.
16 exposures of 90 seconds with telephoto lens 200 mm f / 1.8, ISO 1,600, Canon EOS 6D camera modified. Center, (AR): 19h 38m 39s, (Dec.): + 23 ° 21 '50 ". Angular field: 12.1º x 7.9º. Scale: 6.9 arcsec / pixel.
αSge, α Sagittae, 5 Sagittae, Sham or Alsahm. It is a star of apparent magnitude +4.37. In spite of having the denomination of Bayer «Alpha», it is only the third brightest of the constellation of Sagitta, the Arrow. Its name is of Arabic origin and means "arrow", and before it was used to designate the entire constellation. Interestingly, the other two brightest stars of Sagitta, γ Sagittae and δ Sagittae, have no proper name.
Sham is a star of similar temperature to the Sun - some 5,400 K - although, being a luminous giant of spectral type G1II, its radius is about 20 times larger than the solar radius. Consequently, it shines with a luminosity equivalent to 340 soles. Its evolutionary state is uncertain, being located in a region of the Hertzsprung-Russell diagram, known as "the Hertzsprung Lagoon", where very few stars are found. Its chemical composition differs from that of the Sun, showing a high nitrogen content, which implies that the surface layers have been contaminated by byproducts derived from helium nuclear fusion. On the other hand, its relative abundance of iron is very similar to the solar one.3 Likewise, even though it has the characteristics of a Cepheid variable star, it does not behave as such. It has a mass approximately 4 times greater than the solar one and its age is estimated at 150 million years. It is 475 light years away.
βSge, Beta Sagittae, 6 Sagittae, HD 185958. It is a star of apparent magnitude +4.39. In spite of having the denomination of Bayer «Beta», it is only the fourth brightest star of the constellation of Sagitta, the Arrow. It is 440 light years away.
Beta Sagittae is a yellow giant of spectral type G8IIIa with a surface temperature of 4.860 K. It has a luminosity 429 times greater than that of the Sun but its size is uncertain; while according to the theory of stellar structure its radius is 29 times larger than the solar radius, the direct measurement of its angular diameter leads to a value 64 times greater than that of the Sun. It revolves on itself with a rotation speed equal to or greater than 9 km / s, with a rotation period of up to 160 days. It has a mass 4.3 times greater than the solar mass and its age is estimated at 130 million years.
Beta Sagittae began his life as a hot star of the main sequence of type B medium. It is thought that at present it fuses helium in carbon and oxygen. It has a metallicity very similar to solar, but shows, however, an enrichment of cyanogen (CN), an abundant molecule in the atmosphere of cold giants. This suggests that nitrogen has risen by convection from the core to the surface.
NGC 6802. It is an open star cluster in the Vulpecula constellation. The object was discovered by the astronomer William Herschel in 1784, using an 18.6-inch reflector telescope. Due to its moderate apparent magnitude (+8.8), it is visible only with amateur telescopes of some power. It is about 3,700 light years away.
Coathanger, Collinder 399 (Cr 399). It is a random group of stars or asterism, located in the Vulpecula constellation near the border with Sagitta. The cluster is also known as the Sufi Cluster or the Brocchi Cluster. The brightest members of this cluster of stars form the asterism known as La Percha.
The status of this group as a star cluster has changed in recent years. The group was considered an authentic cluster during most of the 20th century. However, when observing a variety of criteria, a study in 1970 concluded that only 6 of the brightest stars formed a real group. Several independent studies since 1998 have determined that this object is not a true group, but rather a random alignment of stars. These recent studies have based their findings on improved parallax and motion measurements provided by the Hipparcos satellite that were first published in 1997.
NGC 6793, OCL 115. It is an open star cluster in the Vulpecula constellation. It was discovered by William Herschel in 1789. It is about 3,600 light years away.
NGC 6820 and NGC 6823. It is an emission nebula next to the open star cluster NGC 6823 in Vulpecula. The reflection nebula and the cluster are embedded in a large weak emission nebula called Sh 2-86. The entire area of cloudiness is often referred to as NGC 6820.
M27, the Haltera nebula, is found three degrees to the east and α Vulpeculae three degrees to the west.
The central cluster NGC 6823 is approximately 50 light-years in diameter and is about 6,000 light-years away. The center of the cluster formed about two million years ago and is dominated by bright, young blue stars. It forms the core of the Vulpecula stellar association OB1.
Albireo, β Cyg, β Cygni, 6 Cygni. It is a star in the constellation of the Swan. Although it has the denomination of Bayer "Beta" -second letter of the Greek alphabet-, it occupies the fifth place in terms of brightness within the constellation, being surpassed by Deneb (α Cygni), Sadr (γ Cygni), Giennah (ε Cygni) and δ Cygni. Located on the head of the swan, Albireo is also known as "peak star". Together with the stars mentioned above, it forms the asterism of the Northern Cross.
Although at naked eye Albireo appears as a simple star, with a telescope or binoculars it resolves into a double star. Of the two components, separated by 35 seconds of arc, one is yellow and has an apparent magnitude of +3.05 -Albireo A-, while the other is blue and of magnitude +5.12 -Albireo B-, offering an unbeatable contrast between the double stars of the night sky. It is not known with certainty if Albireo A and Albireo B form a true binary system; if they are really gravitationally bound, their orbital period is at least 75,000 years. Albireo is 385 light years away.
Hi, friends!
i am so glad to inform you my small photo show at Rabbit On cafe gallery in Sapporo.
kudobe is one of my flickr friends for a long time. he planed my photo show at his shop. i finally have a great chance to collaborate with my grand father "granpa Matsuo". i respect his works and his mind of utopia. At this show, my friend nodoca helped out the design and print. today, i did final work to cut the photos and mounted them.
here, you can see how they look like:))
....... i am overwhelmed with happiness and nostalgia. i am combined my polaroid pinhole shots with grand fathers works. this works quite nice meet the different times and dialogue with deceased person.
thank you everyone for helping me and supporting my art work!
nostalgia cyanogen 祖父との対話
cafe&gallery Rabbit On Sapporo
9 Dec, 2008 - 23 Dec,2008
i will upload postcard and flier soon:))
My small photo show is now on!
If you are close to Sapporo, please stop by.
I will upload one photo a day.
札幌のカフェで小さな個展を開催しています。
お近くの方はどうぞお立ち寄りください。
cafe&gallery Rabbit On Sapporo
ある時 母から古い封とうを受け取りました
のぞいてみると わたしが生まれて間もなく亡くなった
祖父の手紙と写真が入っていました
わたしの手にわたってからは
引き出しの中にしばらく置き去りにされていて
誰にも読み返されることはありませんでした
One day, I was handed an old envelope from my mother.
I looked into it, there were the letters and photographs of my Grand
father who passed away when I was two years old.
Those letters and photographs had never red or looked again by anyone
else, because they were left behind the drawer of my desk since then.
photo left:mistubako, cherry blossom 2005 spring
photo right:Granpa Matsuo, his grand daughter Mustumi 1961
There are no fewer than four "bright" comets visible in the pre-dawn sky from northern latitudes right now. The two brightest are ISON and Lovejoy. Lovejoy is the one most well-placed for admiring from my location, the others being too close to the sun to afford much of a photographic opportunity. Lovejoy and ISON both have a coma that is glowing bright green due to the formation of poisonous cyanogen gas. The "dirty snowball" is getting brighter as it approaches the sun and the increased heat sublimates the ice producing more gas. The tail is rather dim now (best seen in a dark room with averted vision) but is expected to become more prominent as it nears the sun. Lovejoy swings around the sun in early December so here is hoping it survives its scorching. If it does survive, it will be visible through most of 2014 albeit becoming dimmer with time. This is a stack of 33 x 10 second frames stacked in DeepSkyStacker. Prince George, BC, Nov 16, 2013.
The fuzzy star with the tail near the center of the picture is Comet NEOWISE, a horribly named, long-period comet that first appeared in spring 2020.
Locality: view from the western side of Newark, Licking County, east-central Ohio, USA
-------------------------
See info. at:
en.wikipedia.org/wiki/C/2020_F3_(NEOWISE)
-------------------------
Comets are often described as "dirty snowballs" or "icy dirtballs". They are small to moderately small, ice-rich bodies that usually have highly elliptical orbits and occasionally get near the Sun. They appear in the sky without warning and move relatively quickly. They last weeks to months, then disappear. Some are bright enough to see during daytime. Thousands of comets have been cataloged, but it's been speculated that trillions of them occur in the far-distant areas of the Solar System.
The "fuzzy star" portion is called the comet's head - it contains a solid nucleus. The fuzzy halo around the nucleus is the coma, which is really the comet's atmosphere. Comas develop when the comet is sufficiently close to the Sun to warm up and ice starts volatilizing. The comet's low gravity keeps some of this material close to the nucleus. The coma of some comets can be larger than the Sun itself. Comet heads often have a greenish glow to them, caused by C2 and CN molecules.
The comet's tail also only develops relatively close to the Sun and always points away from it. The tail of a comet is basically a coma that has been stretched out by solar wind. Some comet tails are over 3.5 AU (astronomical units) long. The morphology of comet tails and tail streamers vary with time; sections of comet tails can be severed and reconnected by irregularities in solar wind and magnetic field lines.
Two comet tails are often visible - one is straight and bluish-colored and the other is curved and light-colored. The straight, bluish tail is the ion tail - it is composed of electrically charged gas atoms or molecules. The curved, light-colored tail is the dust tail - it is composed of tiny solid particles (mineral and rock fragments). The degree of curvature varies (for a spectacular example, see Comet McNaught: www.flickr.com/photos/98389309@N02/10055241504 ).
Based on trajectory studies, comets are known to have two sources. Short-period comets (also known as periodic comets) orbit the Sun regularly, on time scales of 200 years or less. Their orbits are usually prograde (= counter-clockwise movement around the Sun, when viewed from above the Sun's North Pole) and are close to the plane of the ecliptic. Most short-period comets appear to originate from beyond Planet Pluto. They are estimated to last a few hundred thousand years before they self-distintegrate or plunge into the Sun. A good example of a short-period comet is Halley's Comet, which returns every 76 years.
Long-period comets have very long-duration orbits, on time scales of thousands to millions of years. They come in from any and all directions (= not restricted to orbiting close to the plane of the ecliptic). A good example is Comet Hale-Bopp, which was visible in daytime in 1997. Long-period comets appear to originate from the Oort Cloud, a hypothetical, extremely distant source area that forms a more-or-less spherical halo around the Solar System. No direct evidence for the Oort Cloud exists.
The geology of comet nuclei was speculative until spacecraft visited, imaged, and sampled some of them. Six cometary nuclei have been visited so far: Halley, Tempel I, Wild 2, Hartley 2, Borrelly, and Churyumov-Gerasimenko. Based on this small sample set, comet nuclei have irregular shapes - their low gravity does not result in subspherical shapes (they're not "round"). Three imaged nuclei are bilobed, each of which probably formed by low-velocity impacts of two separate objects. Nuclei vary in size from tens of kilometers to about one-tenth of a kilometer across. All are low-density, about half that of water - they're fluffy, similar to cotton candy. The surfaces of comet nuclei are dark-colored, organic-rich crusts. One lander sent to a comet did obtain outcrop-scale imagery showing an agglomerate rock face, composed of pebbles. When close to the Sun, ice volatilization results in comet nuclei releasing material in the form of geyser-like jets. Individual jets can be narrow or wide. Some are short-lived; some occur due to cliff collapse events. Cometary jetting involves water vapor (H2O) and carbon dioxide gas (CO2) escaping at high velocity from subcircular pits similar to sinkholes.
Dust samples captured by a spacecraft show that cometary jets shoot out gas and solid, aggregate particles (composed of many smaller grains). Individual dust grains disaggregate during ejection and also disaggregate when impacting a spacecraft's collector.
Based in particular on data from Comet Wild 2 and Comet Churyumov-Gerasimenko, comets are known to be a mixture of various types of ice and trapped gases and mineral grains and rock fragments. These have multiple origins: some are Solar System materials, some are materials from the interstellar medium, and some are presolar materials derived from other stars.
Minerals identified in comet samples include forsterite olivine, diopside pyroxene, anorthite plagioclase feldspar, pyrrhotite, pentlandite, spinel, and osbornite. All of these are high-temperature minerals, co-occurring with ice.
Multiple varieties of ice have been identified in comets: three types of water ice (H2O, HDO, and D2O), hydrogen peroxide ice (H2O2), dry ice (CO2), carbon monoxide ice (CO), and ammonia ice (NH3) (+ varieties with D instead of H).
Other chemicals identified in comets include molecular oxygen (O2), molecular nitrogen (N2), sulfur chemicals (H2S, HDS, S2, S3, S4, S8, SO, SO2, SCO, CS2, and organic sulfur compounds), hydrogen cyanide (HCN), cyanogen (C2N2), ammonium cyanide (NH4CN), and cyanamide (NH2CN). Five types of alcohol are in comets: methanol (CH3OH / CH3OD), ethanol (C2H5OH), propanol (H3H7OH), butanol (H4H9OH), and pentanol (C5H11OH). Seven, possibly eight types of petroleum natural gas are present: methane (CH4), ethane (C2H6), propane (H3H8), butane (H4H10), pentane (C5H12), hexane (C6H14), heptane (C7H16), and probably octane (C8H18). Nasty acids are also in comet nuclei: formic acid (HCOOH), acetic acid (C2H4O2), benzoic acid (C7H6O2), hydrobromic acid (HBr), hydrochloric acid (HCl), and hydrofluoric acid (HF). On top of all that, there are noble gases: argon (Ar), krypton (Kr), and 7 isotopes of xenon (Xe).
Why not give the rest of the list - comets have LOTS of chemicals: acetaldehyde, acetonitrile, acetylene, benzene, butanamide, chloromethane, ethanethiol, ethylamine, ethylene glycol, formaldehyde, glycine (= an amino acid), magnesium, methanethiol, methylamine, naphthalene, phosphorus, phosphorus oxide, potassium, propylenglycol, silicon, sodium, thioformaldehyde, toluene, and xylene.
Intriguingly, one possible rock sample from a comet is available. "Hypatia" is the nickname for a unique rock found in southwestern Egypt. It is black, hard, lustrous, and diamond-rich. It was recovered from the Libyan Desert Glass strewn field. Libyan Desert glass consists of (usually) yellowish-colored tektites formed during the Oligocene, about 28.5 million years ago. The lack of a crater suggests they may have formed during a bolide airburst, similar to the Tunguska, Siberia event of 1908. "Hypatia" may be a rock sample from that impacting object, which may have been a comet.
So What?
Comets are not only visually appealing, they do have significance in Earth history. Comets have certainly arrived on Earth in the geologic past and they have long been suspected to be an important source of Earth's water. Most comets do not have the same deuterium to hydrogen ratio as Earth's water, but at least one comet has been identified that does have just about the same D/H ratio as seawater.
It's been estimated that comets delivered about 1 to 2% of all water on Earth, plus about 10 to the 17th power kilograms of organic chemicals. About 22% of Earth's atmospheric xenon seems to be cometary in origin.
If you find comets intriguing, but don't have the patience to wait for the next visible example, remember that most meteors ("shooting stars") are interpreted to be dust-sized to pebble-sized particles, most of which are derived from comets (Examples: Comet Encke and Comet Swift-Tuttle).
The fuzzy star with the tail near the bottom of the picture is Comet NEOWISE, a horribly named, long-period comet that first appeared in spring 2020.
Locality: view from the western side of Newark, Licking County, east-central Ohio, USA
-------------------------
See info. at:
en.wikipedia.org/wiki/C/2020_F3_(NEOWISE)
-------------------------
Comets are often described as "dirty snowballs" or "icy dirtballs". They are small to moderately small, ice-rich bodies that usually have highly elliptical orbits and occasionally get near the Sun. They appear in the sky without warning and move relatively quickly. They last weeks to months, then disappear. Some are bright enough to see during daytime. Thousands of comets have been cataloged, but it's been speculated that trillions of them occur in the far-distant areas of the Solar System.
The "fuzzy star" portion is called the comet's head - it contains a solid nucleus. The fuzzy halo around the nucleus is the coma, which is really the comet's atmosphere. Comas develop when the comet is sufficiently close to the Sun to warm up and ice starts volatilizing. The comet's low gravity keeps some of this material close to the nucleus. The coma of some comets can be larger than the Sun itself. Comet heads often have a greenish glow to them, caused by C2 and CN molecules.
The comet's tail also only develops relatively close to the Sun and always points away from it. The tail of a comet is basically a coma that has been stretched out by solar wind. Some comet tails are over 3.5 AU (astronomical units) long. The morphology of comet tails and tail streamers vary with time; sections of comet tails can be severed and reconnected by irregularities in solar wind and magnetic field lines.
Two comet tails are often visible - one is straight and bluish-colored and the other is curved and light-colored. The straight, bluish tail is the ion tail - it is composed of electrically charged gas atoms or molecules. The curved, light-colored tail is the dust tail - it is composed of tiny solid particles (mineral and rock fragments). The degree of curvature varies (for a spectacular example, see Comet McNaught: www.flickr.com/photos/98389309@N02/10055241504 ).
Based on trajectory studies, comets are known to have two sources. Short-period comets (also known as periodic comets) orbit the Sun regularly, on time scales of 200 years or less. Their orbits are usually prograde (= counter-clockwise movement around the Sun, when viewed from above the Sun's North Pole) and are close to the plane of the ecliptic. Most short-period comets appear to originate from beyond Planet Pluto. They are estimated to last a few hundred thousand years before they self-distintegrate or plunge into the Sun. A good example of a short-period comet is Halley's Comet, which returns every 76 years.
Long-period comets have very long-duration orbits, on time scales of thousands to millions of years. They come in from any and all directions (= not restricted to orbiting close to the plane of the ecliptic). A good example is Comet Hale-Bopp, which was visible in daytime in 1997. Long-period comets appear to originate from the Oort Cloud, a hypothetical, extremely distant source area that forms a more-or-less spherical halo around the Solar System. No direct evidence for the Oort Cloud exists.
The geology of comet nuclei was speculative until spacecraft visited, imaged, and sampled some of them. Six cometary nuclei have been visited so far: Halley, Tempel I, Wild 2, Hartley 2, Borrelly, and Churyumov-Gerasimenko. Based on this small sample set, comet nuclei have irregular shapes - their low gravity does not result in subspherical shapes (they're not "round"). Three imaged nuclei are bilobed, each of which probably formed by low-velocity impacts of two separate objects. Nuclei vary in size from tens of kilometers to about one-tenth of a kilometer across. All are low-density, about half that of water - they're fluffy, similar to cotton candy. The surfaces of comet nuclei are dark-colored, organic-rich crusts. One lander sent to a comet did obtain outcrop-scale imagery showing an agglomerate rock face, composed of pebbles. When close to the Sun, ice volatilization results in comet nuclei releasing material in the form of geyser-like jets. Individual jets can be narrow or wide. Some are short-lived; some occur due to cliff collapse events. Cometary jetting involves water vapor (H2O) and carbon dioxide gas (CO2) escaping at high velocity from subcircular pits similar to sinkholes.
Dust samples captured by a spacecraft show that cometary jets shoot out gas and solid, aggregate particles (composed of many smaller grains). Individual dust grains disaggregate during ejection and also disaggregate when impacting a spacecraft's collector.
Based in particular on data from Comet Wild 2 and Comet Churyumov-Gerasimenko, comets are known to be a mixture of various types of ice and trapped gases and mineral grains and rock fragments. These have multiple origins: some are Solar System materials, some are materials from the interstellar medium, and some are presolar materials derived from other stars.
Minerals identified in comet samples include forsterite olivine, diopside pyroxene, anorthite plagioclase feldspar, pyrrhotite, pentlandite, spinel, and osbornite. All of these are high-temperature minerals, co-occurring with ice.
Multiple varieties of ice have been identified in comets: three types of water ice (H2O, HDO, and D2O), hydrogen peroxide ice (H2O2), dry ice (CO2), carbon monoxide ice (CO), and ammonia ice (NH3) (+ varieties with D instead of H).
Other chemicals identified in comets include molecular oxygen (O2), molecular nitrogen (N2), sulfur chemicals (H2S, HDS, S2, S3, S4, S8, SO, SO2, SCO, CS2, and organic sulfur compounds), hydrogen cyanide (HCN), cyanogen (C2N2), ammonium cyanide (NH4CN), and cyanamide (NH2CN). Five types of alcohol are in comets: methanol (CH3OH / CH3OD), ethanol (C2H5OH), propanol (H3H7OH), butanol (H4H9OH), and pentanol (C5H11OH). Seven, possibly eight types of petroleum natural gas are present: methane (CH4), ethane (C2H6), propane (H3H8), butane (H4H10), pentane (C5H12), hexane (C6H14), heptane (C7H16), and probably octane (C8H18). Nasty acids are also in comet nuclei: formic acid (HCOOH), acetic acid (C2H4O2), benzoic acid (C7H6O2), hydrobromic acid (HBr), hydrochloric acid (HCl), and hydrofluoric acid (HF). On top of all that, there are noble gases: argon (Ar), krypton (Kr), and 7 isotopes of xenon (Xe).
Why not give the rest of the list - comets have LOTS of chemicals: acetaldehyde, acetonitrile, acetylene, benzene, butanamide, chloromethane, ethanethiol, ethylamine, ethylene glycol, formaldehyde, glycine (= an amino acid), magnesium, methanethiol, methylamine, naphthalene, phosphorus, phosphorus oxide, potassium, propylenglycol, silicon, sodium, thioformaldehyde, toluene, and xylene.
Intriguingly, one possible rock sample from a comet is available. "Hypatia" is the nickname for a unique rock found in southwestern Egypt. It is black, hard, lustrous, and diamond-rich. It was recovered from the Libyan Desert Glass strewn field. Libyan Desert glass consists of (usually) yellowish-colored tektites formed during the Oligocene, about 28.5 million years ago. The lack of a crater suggests they may have formed during a bolide airburst, similar to the Tunguska, Siberia event of 1908. "Hypatia" may be a rock sample from that impacting object, which may have been a comet.
So What?
Comets are not only visually appealing, they do have significance in Earth history. Comets have certainly arrived on Earth in the geologic past and they have long been suspected to be an important source of Earth's water. Most comets do not have the same deuterium to hydrogen ratio as Earth's water, but at least one comet has been identified that does have just about the same D/H ratio as seawater.
It's been estimated that comets delivered about 1 to 2% of all water on Earth, plus about 10 to the 17th power kilograms of organic chemicals. About 22% of Earth's atmospheric xenon seems to be cometary in origin.
If you find comets intriguing, but don't have the patience to wait for the next visible example, remember that most meteors ("shooting stars") are interpreted to be dust-sized to pebble-sized particles, most of which are derived from comets (Examples: Comet Encke and Comet Swift-Tuttle).
Comet C/2009 P1 (Garradd)
Taken 20110731
This comet is about magnitude 10.7 now. The coma is blue-green from carbon and cyanogen gas. The dusty tail is red.
At the top-left you can see a small blue planetary nebula, NGC 7094.
Telescope:
Celestron Edge HD 14"
Hyperstar 3 adapter
Mount:
Celestron CGE Pro
Camera:
Celestron NightScape one-shot-color camera.
Guiding:
Celestron Onyx80EDF
Lumenera Skynyx 2.0m
MetaGuide
Exposures:
63x60s
Notes:
The image data was processed twice: once on the stars (to reject the moving comet) and once on the comet (to reject the stars). The two images were overlaid in Photoshop so that the detail around the comet could be seen in addition to the fainter parts of the comet tail. There are still remnant of the star trails visible in the image, giving it a sense of motion.
My small photo show is now on!
If you are close to Sapporo, please stop by.
I will upload one photo a day.
札幌のカフェで小さな個展を開催しています。
お近くの方はどうぞお立ち寄りください。
cafe&gallery Rabbit On Sapporo
ある時 母から古い封とうを受け取りました
のぞいてみると わたしが生まれて間もなく亡くなった
祖父の手紙と写真が入っていました
わたしの手にわたってからは
引き出しの中にしばらく置き去りにされていて
誰にも読み返されることはありませんでした
One day, I was handed an old envelope from my mother.
I looked into it, there were the letters and photographs of my Grand
father who passed away when I was two years old.
Those letters and photographs had never red or looked again by anyone
else, because they were left behind the drawer of my desk since then.
photo left: Granpa Matsuo, early 1900s'
photo right:mistubako, cherry blossom 2005 spring
My small photo show's postcards are arrived. This was designed by Kudobe.
cafe&gallery Rabbit On Sapporo
9 Dec, 2008 - 23 Dec,2008
ある時 母から古い封とうを受け取りました
のぞいてみると わたしが生まれて間もなく亡くなった
祖父の手紙と写真が入っていました
わたしの手にわたってからは
引き出しの中にしばらく置き去りにされていて
誰にも読み返されることはありませんでした
One day, I was handed an old envelope from my mother.
I looked into it, there were the letters and photographs of my Grand father who passed away when I was two years old.
Those letters and photographs had never red or looked again by anyone else, because they were left behind the drawer of my desk since then.
Anyone who wants to send this postcard, Please email me your add.
I will send it to you.
Fishing is also not (only) for men :)
Chose to post these while it's still Women's Day (in parts of the world, at least :) I always thought that just one day is too bad and at least 365 days in a year should be devoted to the beautiful part of humanity - but it's in the calendar and I treat it as just a reminder. So this is instead of a bouquet to all the girls on Flickr - stay beautiful!
Press 'L' to see large on black
Introduction
Rudolf Steiner (1861-1925) a enseigné sa fabuleuse conception ésotérique du monde entre 1900 et 1925 à travers 6000 conférences, dont environ 3500 nous sont parvenues.
Steiner clamera dès le début que sa conception du monde était scientifique, que sa théosophie était une science spirituelle, résultat d’une méthode scientifique qu’il qualifiait de clairvoyance exacte. Toutefois quand on examine les choses en profondeur, on se rend compte qu’un très grand nombre de ses déclarations sont inexactes quand elles portent sur des phénomènes que l’on peut étudier et observer avec des moyens physiques. Néanmoins Steiner les présente comme des résultats de la science spirituelle et de cette clairvoyance qu’il prétend exacte à la base de sa méthode scientifique rigoureuse.
Ce qui suit tente de faire ressortir de la somme gigantesque des déclarations de Steiner celles qui sont erronées parce que les faits observés les contredisent de manière flagrante. J’admets cependant, que dans certains cas rares, on peut avoir des doutes sur ce qu’à voulu dire Steiner qui utilise souvent un vocabulaire suranné, des termes confus si pas ambigus.
L’intention de départ n’était pas de montrer que la doctrine de Steiner était pleine de contradictions, néanmoins en comparant ses affirmations, elles apparaissent d’elles-mêmes. On constatera, même incidemment, que Steiner, dans nombre de cas, ne vérifie pas ses sources et qu’il donne même des explications de phénomènes inexistants. Bien des éléments puisés dans la théosophie de Blavatsky sont également dans ce cas, mais Steiner les a cependant adoptés avec une grande crédulité.
À vrai dire, il n’est pas facile de se faire une idée claire de la conception du monde de Steiner car ses conceptions ont souvent variés selon les époques. La raison en est qu’il reformule en permanence toutes les données afin de tenter de les intégrer à sa grande fresque de l’existence humaine et de son évolution, en suivant la ligne directrice qu’il a trouvée chez Goethe principalement. Steiner se prétend scientifique, mais en réalité il se comporte plutôt comme un artiste peignant cette grande fresque progressivement, retouchant souvent telle ou telle partie, où même la recouvrant pour l’une ou l’autre raison.
On constatera que nombre de citations sont redondantes, mais c’est voulu pour bien montrer qu’il ne s’agit pas d’une erreur de transcription ou de traduction et que cela traduit bien la pensée de Steiner.
Commençons par un résumé synthétique qui pourrait sembler caricatural mais on verra qu’il n’en est rien.
L’univers est clos et l’espace s’arrête plus ou moins après Saturne qui en marque la limite. Au-delà, l’espace n’existe plus et le monde n’est plus qu’éthérique et astral, de plus, les étoiles elles-mêmes, qui sont des colonies d’entités spirituelles, ne sont pas physiques. En dehors, de la Terre, il n’y a pas de substances physiques, et les lois de la physique ne sont plus valables. Mais curieusement, les comètes contiennent du cyanogène, comme l’avait confirmé l’analyse spectrale qui est pourtant une illusion ; de plus les comètes apporteraient du fer bien physique sur la Terre, et nourriraient le solide estomac du Soleil.
La Lune est faite d’une sorte de corne vitrifiée, mais n’est pas minérale, elle se rapproche de la Terre avec laquelle elle se réunira au 7e millénaire et en outre elle est constituée de substances plus denses que celles de la Terre. Mars a la consistance d’une gelée plus ou moins liquide et est une planète beaucoup plus vivante que la Terre ; en outre elle abriterait des sortes d’humains et des animaux comme il en aurait existé sur la Terre autrefois. Ses canaux seraient des sortes de vents alizés martiens. Jupiter est aérien, et Saturne est encore de nos jours constitué de pure chaleur, ainsi que ses anneaux qui sont une illusion d’optique. Uranus et Neptune ne font pas partie de notre système solaire, elles ont été captées bien plus tard ou, selon un autre scénario, elles se sont formées respectivement en même temps que Jupiter et Mars. On doit conclure qu’Uranus et Neptune sont dès lors hors de l’espace puisqu’il est censé s’arrêter à Saturne. Le Soleil quant à lui est un espace creux, un espace de matière négative qui reflète la lumière spirituelle reçue des planètes sous forme physique ; en dehors de cela, le Soleil ne contient ni matière, ni gaz, ni chaleur, ni lumière et si on en approchait on ne ressentirait aucune chaleur mais on serait transformé en poussières par ses puissantes forces d’aspiration ou de succion qui finalement suffisent pour expliquer la gravitation. Les planètes, par contre, n’orbitent pas autour du Soleil selon des ellipses, en fait elles n’orbitent pas du tout, elles suivent simplement le Soleil qui fonce à grande vitesse vers la constellation d’Hercule. Le système de Copernic est faux, et le système de Ptolémée sera un jour réhabilité, toutefois il faudrait réintroduire le troisième mouvement de Copernic dans l’astronomie. Quand un Soleil arrive à la fin de son évolution, il devient une étoile fixe, et ensuite un zodiaque formé de 12 constellations.
La Terre est, quant à elle, matérielle, mais autrefois elle a été végétale et même animale, les roches les plus dures et tous les minéraux sont des cendres des substances organiques qui ont été brûlées. La Terre est constituées de 7 couches dont seule la septième, la croûte, est faite de substances matérielles. Les continents nagent ou flottent dans l’eau des océans, et ils sont maintenus en place par la force des constellations, lesquelles font monter et descendre les terres à leur gré, quand les terres sont élevées, elles sont froides et enneigées comme en haute montagne, on parle alors de période glaciaire. Ce sont aussi les forces provenant des constellations qui arrachent la substance terrestre de la terre et la projette dans l’atmosphère lors des éruptions volcaniques. Ce sont certaines des couches intérieures de la Terre qui sont responsables de la destruction du continent lémurien imaginaire par le feu, et de l’engloutissement du continent atlantéen, tout aussi imaginaire, par l’eau. La Lune a été extraite de la Terre à l’époque de la Lémurie par des entités spirituelles, car de toutes façons les lois de la gravitation universelle de Newton ne valent rien, et la théorie de la relativité d’Einstein vaut encore moins, puisque de toute manière les lois de la physique ne sont valables que sur la Terre et que tout ce qui est hors de la Terre, même si c’est visible, est supraphysique.
Voyons cela plus en détails.
Les lois de la nature
Considérons quelques unes des déclarations de Rudolf Steiner concernant les lois de la nature :
« Une science physique cela n’a de sens que pour la Terre, carc’est seulement sur la Terre qu’il existe de la matière physique ».
[Considérations ésotériques sur le karma Tome 5 – GA 239, 8 juin 1924 – p.169]
« Il faut être assez naïf pour oser affirmer que les mêmes lois naturelles chez nous, s’appliquent aussi à une étoile située à des années-lumière de nous. En effet les lois de la nature s’appliquent uniquement aux conditions terrestres, et elles cessent lorsque nous pénétrons dans l’espace cosmique. Par contre les lois éthériques nous viennent des lointains de l’espace cosmique. »
[Les fêtes de l'année et leur intériorisation – GA 224 – 11 juillet 1923 – p. 133]
« Je voudrais dire expressément que l’anthroposophie ne se complaît guère dans une opposition dilettantiste à la science. Au contraire, elle fait de la science plus de cas que cette dernière n’en fait d’elle-même. L’anthroposophie prend précisément au sérieux la science, mais en pratiquant une pensée rendue plus dense, elle peut déclarer que les lois que nous rencontrons en physique et chimie n’existent que pour le monde des substances de notre Terre, mais qu’elles ne comptent plus lorsqu’on passe dans l’univers. Et voilà, je dois exprimer une notion qu’à première vue, y pensant sans préjugé, on trouve cependant plausible car elle n’est paradoxale qu’en apparence. Prenons une source de lumière. Nous savons comment la dispersion affaiblit progressivement la lumière qui devient de moins en moins intense. En la suivant dans l’espace, nous la voyons de plus en plus faible si bien que finalement nous sommes tentés de n’y voir que du crépuscule et plus de lumière, jusqu’à ce qu’enfin, répandue si loin, elle ne puisse plus compter comme lumière. Il en est de même pour les lois de la nature. Valables sur la Terre, elles le sont de moins en moins à mesure qu’on s’en éloigne jusqu’au point où elles sont nulles. …. Dès que nous appréhendons la pensée devenue plus dense, nous apprenons à reconnaître que les lois de la nature ne peuvent s’appliquer qu’au règne minéral. Nous ne pouvons pas commettre l’erreur bien compréhensible de la physique moderne et dire que ces lois peuvent s’étendre au Soleil et aux étoiles. Cela est impossible. »
[Médicament et médecine à l'image de l'homme. — GA 319 — 17 juillet 1924 — p. 175-176.]
« Le physicien actuel ou l’astronome, le scientifique actuel en général, que fait-il ? Il fait l’investigation des lois naturelles. Il observe et découvre ainsi des lois naturelles, ou bien encore il fait de l’expérimentation et découvre aussi par là des lois naturelles. Maintenant il les a donc ces lois naturelles, elles sont une science, elles lui donnent ce qui se trouve dans les choses. En fait il ne devrait pas affirmer plus que cela. Mais alors il commence à devenir fier et orgueilleux de ses lois naturelles et il fait une affirmation qu’il ne devrait pas pouvoir faire en fait, à savoir : que ces lois naturelles sont valables dans l’univers tout entier. Il dit : si j’ai fait une recherche sur la Terre dans mon laboratoire, et si les conditions peuvent être reproduites de la même manière sur les étoiles les plus lointaines de l’univers, celles dont la lumière a besoin de tant d’années-lumière pour parvenir à la Terre – les gens prétendent pouvoir se représenter quelque chose de tout cela – si donc les conditions étaient possibles de la même façon là-bas, les lois naturelles y seraient donc, d’après lui valables, car ces lois naturelles sont censées être justement de valeur absolue. Oui, mais il n’en est pas ainsi. S’il y a une source de lumière, elle brille tout d’abord de façon forte alentour. Lorsqu’elle se répand plus loin, la force de la lumière est de plus en plus réduite ; si nous allons encore plus loin elle est encore plus réduite et si nous nous éloignons tout à fait elle devient de faible luminosité. L’intensité de la lumière diminue selon le carré de la distance. Il en est ainsi de toute lumière. Et de façon curieuse, il en est de même pour les lois naturelles constatées sur Terre. Ce que vous constatez sur la Terre en tant que lois naturelles, cela devient de moins en moins valable à mesure que vous vous éloignez de la Terre. C’est terrible n’est-ce pas, d’exprimer une telle chose, et on doit être un véritable idiot aux yeux du chercheur scientifique régulier lorsqu’on exprime quelque chose de ce genre, évidemment. … »
[Imagination, inspiration, intuition, GA 84/1 – 20 avril 1923, p. 114]
Toutefois :
« Aujourd’hui, grâce à l’analyse spectrale nous pouvons vérifier quelles sont les substances qui agissent dans l’univers. Quelle que soit la direction dans laquelle nous pointons notre spectroscope, nous trouvons partout dans l’univers cette coloration qui nous indique que de toute part agit l’hydrogène,que l’hydrogène se trouve partout »
[Les manifestations de l'esprit dans la nature, Dornach, 20 octobre 1923 ]
Ainsi :
La matière physique n’existe que sur la Terre (mais il admet parfois qu’il y a de l’hydrogène dans le cosmos)
Dans le cosmos, il n’y a que de l’éther pour le moins.
Les lois de la nature (c’est-à-dire les lois de la physique) ne sont valables que sur Terre, et parfois il ajoute qu’elles décroissent en fonction du carré de la distance.
Steiner affirme ainsi que la matière physique n’existe que sur la Terre et que dans le cosmos, il n’y a que de l’éther (et des substances encore plus spirituelles). Ensuite il affirme que les lois de la nature ne sont valables que sur la Terre, et même qu’elles décroissent avec le carré de la distance, tandis que dans le cosmos elles ne sont plus valables du tout, mais il parvient à se contredire à moins d’un an d’intervalle en admettant qu’il y a de l’hydrogène partout dans le cosmos ! (sans compter le fer météoritique, les comètes qui contiennent du cyanogène et du fer).
Il est clair que si les lois cosmiques n’était pas valables dans le cosmos, nous ne pourrions pas envoyer des sondes spatiales aux confins du système solaire. La sonde Voyager 1 a atteint actuellement (nov. 2012) pratiquement les limites du système solaire, la limite de l’héliosphère, l’énorme bulle de gaz formée par le vent solaire, et ce à une distance de 18 milliards de kilomètres et pour qui en douterait, les lois de la physique sont encore bien valables car nous recevons encore par ondes radio les signaux qu’elle nous transmet. La sonde Voyager 2 suit le même chemin.
Il est certain aussi que toutes les planètes du système solaire, ainsi que les comètes, les astéroïdes, les météores et météorites sont tous bien constitués de matière physique. Non seulement Rudolf Steiner se trompe, mais ce qui est plus grave c’est qu’il présente cela comme un résultat de la science de l’esprit, c’est-à-dire de la clairvoyance qu’il prétend exacte. Il faut en conclure que soit Steiner n’est pas clairvoyant, soit sa clairvoyance n’est pas fiable pour l’une ou l’autre raison, ce qui finalement revient à peu près au même. On va voir que ses autres affirmations, souvent péremptoires, confirment cette première conclusion.
La Lune
Examinons maintenant ce que Steiner déclare au sujet de notre satellite.
« Mais les entités spirituelles porteuses de cette sagesse primordiale et qui autrefois avait foulé la terre [en Atlantide] s’étaient depuis longtemps retirées et avait fondé la colonie cosmique de la Lune. C’est pur enfantillage de croire que la Lune est ce corps durci, glacé, que la physique actuelle décrit… »
[Histoire du monde à la lumière de l'anthroposophie, GA 233/233a — 26 déc. 1923 – p. 52]
« La conception que se fait du Soleil la science matérialiste est tout à fait erronée. Le Soleil est un espace vide par rapport à tout ce qui est autour de lui. Ainsi parmi les étoiles qui nous sont les plus proches, le Soleil est la personne la plus légère qui soit. La lune est en proportion la plus lourde, car elle est sortie autrefois de la Terre emportant justement avec elle les matières les plus lourdes que la Terre ne pouvait plus tolérer.Elle est certes plus légère que la Terre à cause de sa petite taille,mais ce qu’on appelle son poids spécifique est plus lourd [le terme exact est masse spécifique (ou densité massique)]. Le contraste entre le Soleil et la Terre est le plus fort. Le Soleil est le corps le plus léger de l’espace et la Lune le plus lourd. Le Soleil est également de ce fait, l’être le plus spirituel, alors que la Lune est l’être le plus matériel. [...] car le Soleil est l’être le plus spirituel qui soit ; la Lune est l’être le plus matériel. Étant le plus matériel, l’être de la Lune exerce une influence matérielle au-delà du quotidien humain. »
[Histoire de l'humanité - Conceptions du monde... GA 353 - Dornach, 17 mai 1924, p. 282]
« La Lune par contre, ayant à l’extérieur une couche de liquide épais et à l’intérieur la composante gazeuse épaisse, forma à sa surface la croûte cornée coriace que nous voyons en levant les yeux sur elle. Cette croûte n’est pas comme nos minéraux, elle est comme si notre règne minéral était devenu de la corne, vitrifiée et plus dure que toute corne que nous connaissons sur Terre, mais moins dure toute fois que notre minéral, c’est une corne. C’est pourquoi la Lune est si étrange. Ses montagnes étranges sont faites de corne solidifiée. Ce sont des formes qui permettent de reconnaître en elles la substance organique qui était autrefois en lien avec la vie. »
[Création du monde et de l’homme, GA 354 –3 juillet 1924, EAR, p. 49]
« La Lune physique n’est plus que scories, parce que les forces qui fixent la forme résident en elle….
Deux groupes de forces dirigent leur influence vers la Terre : les forces du Soleil et celles de la Lune, les unes stimulantes,les autres pétrifiantes. … »
[Mythes et mystères égyptiens — GA 106 – VI – p. 65 – Triades, 1971 ]
« Comment, au XIXe siècle a-t-on compté avec le matérialisme ? Les gens n’auraient jamais cru que derrière la Lune matérielle se trouvent encore les plus importants vestiges, non minéralisés, de l’ancienne Lune. Personne n’aurait cru cela ! Alors on a fait une concession au matérialisme, en ne parlant que de la Lune physique, donc matérialisée. Sinnett a tout simplement oublié l’esprit lorsqu’il a parlé de la Lune. Comme vous pouvez le constater en lisant le “Bouddhisme ésotérique”, qu’il s’est contenté de dire que la Lune est faite d’une matière beaucoup plus dense que la Terre. Elle l’est effectivement, et il faut qu’elle le soit. Mais Sinnett a complètement omis de dire qu’il y a derrière la Lune physique une réalité occulte. Il a fait une concession au matérialisme en ne parlant que de la Lune matérielle et en ignorant la réalité spirituelle qui se cache derrière. Certes, cette réalité n’appartient pas à la Terre ; elle est même beaucoup plus proche de l’ancienne Lune que de la Terre. »
[Les Dangers d'un occultisme matérialiste – Dornach, 17 octobre 1915]
« Ceci posé, nous pouvons dire que les corps célestes sont soumis à des transformations, tout comme les substances du corps physique de l’homme. La substance qui compose actuellement la Lune s’y trouvait aussi peu, il y a quelques siècles, que la matière actuelle de votre corps ne s’y trouvait il y a dix ans. Ce sont les entités lunaires qui maintiennent l’existence de cet astre. Elles représentent sa partie spirituelle, au même titre que le fait en nous le principe spirituel qui nous maintient en vie. Nous savons que la Lune physique a jadis émigré de la Terre dans l’espace universel. L’astre qui est ainsi sorti de la Terre se transforme continuellement, mais les entités qui l’habitent y demeurent, elles représentent son élément durable, abstraction faite des transformations qu’elles subissent elles-mêmes à travers leurs incarnations lunaires successives, etc., mais c’est là un sujet que nous n’aborderons pas aujourd’hui. »
[Anthroposophie, l'homme et sa recherche spirituelle. — GA 234 — 27 janvier 1924, p.59]
« Mais lors de la quatrième phase, ou Terre, la Lune se sépare du globe terrestre, devient satellite, et laisse dans la Terre certaines forces. Ainsi, les forces de la pesanteur par exemple, sont essentiellement un reliquat de la Lune, du point de vue physique. La Terre ne donnerait pas naissance aux forces de la pesanteur, s’il n’était pas resté en son sein un vestige de la Lune qui y était primitivement mêlée. La Lune s’est libérée, et elle est devenue dans l’espace cosmique cette colonie dont je vous ai décrit, il y a peu de temps, l’aspect suprasensible. Sa substantialité diffère profondément de celle de la Terre, maiselle a laissé dans la terre tout ce que l’on peut englober sous les noms de magnétisme terrestre, de pesanteur, de forces terrestres proprement dites. … À l’intérieur de notre Terre actuelle se trouve donc le vestige lunaire, la lune intérieure, agent de l’état solide, fortement ancrée dans le magnétisme terrestre ; c’est grâce à cette action lunaire intérieure qu’il peut exister des corps fermes, et que les choses sont pesantes ; et c’est grâce à la pesanteur que l’élément liquide s’est condensé, donnant naissance aux solides. »
[L'homme dans ses rapports avec les animaux et les esprits des éléments, GA 230 – 26 octobre 1923 – Triades 1984, p.62-63]
« D’après ce que j’ai exposé dans «La Science de l’occulte», vous savez que la Lune n’a pas toujours été là où elle se trouve maintenant. Tout ce qui concerne cette Lune est d’ailleurs assez étonnant. Il est, par exemple, très étrange que les traités et les manuels courants ainsi que les livres scolaires passent entièrement sous silence le fait que la Lune se trouve maintenant dans une situation qui la rapproche peu à peu de nous année après année. La plupart des gens ne le remarquent pas du fait que les manuels n’en parlent pas. Or ce rapprochement est incontestable. En réalité la Lune ne s’est pas toujours trouvée dans le lointain du cosmos comme c’est le cas aujourd’hui. Par sa substance, la Lune était jadis à l’intérieur de la Terre. Elle s’en est ensuite dégagée pour s’en aller dans le cosmos. »
[L'homme suprasensible – GA 231 – 17 nov 1923 — (après-midi) – p. 62]
« Mais songez à ce qu’il adviendrait si l’on continuait de cette manière, si les hommes pensaient leurs pensées-ombres de matérialistes jusqu’au 8e millénaire, jusqu’au moment où la Lune s’unira à la Terre. »
[Perspectives du développement de l'humanité – GA 204 – 13 mai 1921 – p. 278]
« La Lune est effectivement peuplée de la sorte. Les entités y ont, certes, une corporéité, mais pas aussi dense qu’ici. Elle est si ténue qu’elle s’exprime sur Terre de manière astrale. On peut les comparer à des nains qui ne dépassent pas la taille d’un d’enfant de 6 à 7 ans. Ces entités ont une propriété particulière qui leur est conférée par la Lune et vous semblerait bizarre. … Cette propriété est leur infinie grande capacité de hurlement. Leur instrument de hurlement affiche une ampleur extraordinairement puissante. … »
[Êtres naturels et spirituels – leur action dans le monde visible. — GA 98 —15 janvier 1908 – p.183]
« Les êtres lunaires possèdent un corps physique d’une substance très subtile et ressemblent aux enfants de 6 ou 7 ans. Leur action nous est le plus souvent néfaste, mais ils agissent sans conscience. On les connaît comme hurleurs ; leur bruit se répand loin au-delà de la Lune. En période de pleine lune leur activité atteint son paroxysme. Ces êtres sont particulièrement attirés par les asiles d’aliénés, et les médiums spiritistes. Si l’être humain était maître de son sang, comme il est appelé à le devenir, les êtres lunaires n’auraient plus d’emprise sur lui. »
[Êtres naturels et spirituels – leur action dans le monde visible. — 24 février 1908 – p. 292]
Nous apprenons notamment que :
La Lune est plus dense que la Terre.
La Lune est faite de corne vitrifiée, qui n’est pas vraiment minérale.
Elle n’est pas un corps durci et glacé comme le croient les physiciens.
La Lune se rapproche de la Terre (mais c’est un secret probablement).
La Lune est la cause du magnétisme terrestre.
La Lune est la cause de l’attraction terrestre, de la pesanteur.
De la Lune émanent des forces pétrifiantes vers la Terre.
La Lune est habitée par des nains ayant une corps physique subtil et qui hurlent.
La Lune s’unira à la Terre au 8ième millénaire quand les femmes ne sauront plus enfanter, et que toute la substance terrestre aura été humanisée en passant dans des corps humains.
Examinons chacune de ces affirmations.
1. En réalité, la densité de la Lune, c’est-à-dire sa masse spécifique, est plus faible que celle de la Terre. En fait elle vaut 3/5 de celle de la Terre. Steiner explique que la Lune a été retirée de la Terre car elle contenait des substances trop denses, dont émanaient des forces durcissantes et pétrifiantes, afin que ces forces n’entravent pas le développement des corps humains. Remarquons que les substances les plus lourdes sur la Terre sont des substances comme l’uranium qui existent en quantité non négligeable sur la Terre. Si les substances les plus lourdes avaient été déménagées avec la Lune, nous ne devrions plus en avoir et la Lune serait super-dense. Mais c’est tout le contraire. La Lune est moins dense que la Terre. Steiner considère que la Lune se rapproche de la Terre pour s’y réunir dans quelques millénaires uniquement parce que c’est consistant avec sa conception du monde. C’est seulement une déduction.
2. Comme on le sait depuis les prélèvements lunaires et pour y avoir été, la Lune est bien faite de roches minérales, qui n’ont rien d’une substance cornée. Donc la théorie lunatique de Steiner qui fait de la Lune un reliquat de l’ancienne lune tombe à l’eau. Ici encore c’est une déduction faite par analogie.
3. Bien qu’en surface la Lune soit couvertes de roches qu’on appelle des régolithes sorte de poussières agglomérées, l’intérieur est constitué de roches dures et elle est bien un corps glacé, sa température en surface oscille entre 40K et 396K avec une moyenne de 196K (-77° C) et ce sont les astrophysiciens qui avaient vu juste malgré leurs considérations puériles de dilettantes.
4. La Lune ne se rapproche pas de la Terre, elle s’en éloigne selon les mesures actuelles de 3,8 cm par an et c’était déjà le cas dans l’Antiquité comme le confirme indirectement les dates des éclipses de Soleil relevées en Chine et à Babylone. La Lune ralentit la Terre par son action gravitationnelle qui est la cause des marées, et par conséquent de pertes d’énergie sous forme de chaleur. Par conséquent, elle doit s’éloigner pour allonger sa période de révolution. Le moment cinétique devant rester constant. On le savait déjà théoriquement à l’époque de Steiner et c’est bien pour cela que cela ne figure pas dans les manuels !
5. La Lune est la cause du magnétisme terrestre. Même si s’il s’agit d’un vestige lunaire resté dans la Terre, le magnétisme terrestre n’a rien à voir avec la Lune. Le magnétisme est un effet de l’électricité en mouvement. Ce sont les mouvements de métaux en fusion porteurs de charges électriques (principalement du fer) à l’intérieur de la Terre qui produit le magnétisme. En outre le magnétisme propre à la Lune est très faible, et il y a des champs magnétiques partout dans le système solaire et dans le reste de l’univers. Ils sont même très important sur le Soleil où ils donnent naissance aux phénomènes des taches solaires.
6. La Lune n’est en rien responsable de la pesanteur ou attraction terrestre. Toute concentration de matière terrestre ou non exerce une attraction sur une autre concentration de matière, quel que soit par ailleurs le processus sous-jacent, force à distance (selon Newton) ou déformation de la structure de l’espace (selon Einstein, la masse modifie la courbure de l’espace). La pesanteur par surcroît est constatée sur toutes les planètes et planétoïdes du système solaire.
7. Si la Lune exerce des forces pétrifiantes, leur nature est inconnue, et elles n’ont jamais été mises en évidence. Mais ce n’est pas la peine de s’en soucier car c’est une déduction tirée de la soi-disant forte densité de la Lune et de la nécessité de son extraction, ce qui a été réfuté ci-dessus.
8. Ces nains hurleurs étaient sûrement en vacances quand des hommes ont marché sur la Lune, car ils n’ont rien vu, ni rien entendu, toutefois ils peuvent encore crier longtemps car le son ne se transmet pas dans le vide. (Admettons qu’ils étaient vraiment très subtils et que leurs cris étaient poussés dans l’astral).
9. D’ici le 8ième millénaire la Lune se sera encore un peu éloignée. Rien à craindre de ce côté. Ceci dit, pour humaniser toute la substance terrestre d’ici-là, il va falloir mettre les bouchées doubles ou même triples.
Ce que Steiner dit de la Lune confirme ce qui a été dit précédemment quant à ses capacités clairvoyantes. Un mot d’explication n’est cependant pas superflu. Pour Steiner l’ancienne Lune est l’incarnation précédente de notre système solaire, et ses représentants actuels, qui sont des reliquats de cet ancien état, sont la Lune et Mars. Dès lors, Steiner les dote de propriétés que cet état ancien était censé avoir. Plus que de la clairvoyance, il s’agit encore d’analogies et de déductions qui se révèlent fausses par surcroît.
Occupons-nous maintenant de Mars qui est aussi considéré comme un vestige de l’ancien état lunaire.
Mars
« Nous en arrivons maintenant à Mars que nous ne pouvons pas expliquer de la même manière. Il faudrait se le représenter comme un grand globe gazeux qui s’est condensé par refroidissement jusqu’à la consistance d’un liquide. Du milieu aqueux très fluide se détache en un point une boule liquide condensée, et toutes celles qui naissent ensuite finissent par s’arrêter ; mais alors que sur Saturne le mouvement de rotation est arrêté par le Lion, et sur Jupiter la mort provoquée par le Scorpion, les boules aqueuses de Mars s’arrêtent aussi bien, bien que la chose se passe de façon un peu différente.
Le Mars actuel est donc une répétition de l’ancienne Lune. Son orbite limite l’espace autrefois occupé par celle-ci. C’est la partie de la Lune qui est restée vivante ; l’autre partie, c’est notre Lune, qui n’est qu’une scorie. Le pôle opposé est resté vivant et s’est maintenu dans le Mars actuel. Celui-ci correspond au troisième état d’évolution de notre système planétaire, celui de l’ancienne Lune.C’est donc essentiellement un corps liquide.»
[Les Hiérarchies spirituelles et leur reflet dans le monde physique, GA 110, conférence du 17 avril 1909 au soir, Triades p. 152 ]
« Il est vrai que si l’on prête aux planètes la même consistance ferme que la Terre, on peut s’attendre à ce qu’une collision avec la Terre porte un coup violent à tous les êtres vivants ! Mais ce n’est pas le cas, les planètes n’ont pas la même consistance que la Terre. Si Mars, par exemple, venait à tomber sur la Terre, il ne pourrait pas ravager la terre ferme mais seulement l’inonder. Si l’on examinait Mars, pour autant qu’on puisse l’examiner, ce que l’on ne pourra jamais par la seule physique et sans le recours à la science de l’esprit, on verrait au regard spirituel, qu’il est constitué d’une masse aqueuse d’une masse aqueuse moins liquide que l’eau, mais comme une gelée de confiture. Il contient certes également des parties solides, mais leur consistance est plutôt celle ce la corne animale ou des bois animaux. Ces parties plus dures apparaissent puis se dissolvent à nouveau. Il nous faut admettre que la consistance de Mars est tout à fait différente de celle de la Terre.
Voyez-vous, on parle sans cesse des canaux de Mars. Mais pourquoi parle-t-on de canaux ? On ne voit rien d’autre sur Mars que des lignes, comme cela (dessin), et on dit que ce sont des canaux.
C’est juste et ce n’est pas juste à la fois. Car, Mars n’étant pas ferme comme la Terre, on ne peut pas parler de canaux comme nous en avons sur Terre. On peut, en revanche, parler de quelque chose quis’apparente à nos vents alizés, ces vents des régions chaudes, d’Afrique par exemple, de l’équateur, qui montent vers les pôles froids et qui en redescendent. Vu de l’extérieur, ces courants atmosphériques apparaissent comme des lignes, les lignes des alizés. C’est de ce genre de lignes qu’il s’agit sur Mars. Mais tout est plus vivant sur Mars que sur la Terre. La Terre est un astre plus mort que Mars; sur Mars les choses sont encore plus ou moins vivantes.
[…] Songez maintenant que la consistance de Mars n’est pas aussi solide que celle de la Terre, Mars n’a pas de partie solide. Or, Messieurs, j’ai évoqué, il y a quelques temps, le fait que la Terre était autrefois également dans un état où elle n’avait pas de minéral. Le minéral solide ne s’est formé qu’ultérieurement. Des animaux géants y vivaient sans avoir encore de squelette osseux. Mars est aujourd’hui dans un état similaire. Il héberge également des animaux dont la forme est celle des animaux terrestres d’autrefois, et les êtres humains sont sur Mars comme autrefois sur Terre, sans os, comme je vous les ai décrits. C’est une chose que l’on peut savoir. Mais on ne le peut pas par les moyens de la connaissance dont disposent les sciences naturelles. Si on désire se faire une image de l’aspect actuel de Mars, il faut s’imaginer la Terre à une époque antérieure.
Voyez-vous, nous avons aujourd’hui les courants aériens alizés nord-sud. Autrefois ces courants étaient plus visqueux, plus liquides. C’est le cas aujourd’hui sur Mars. Ces courants sont sur Mars plus vivants, plus liquides que nos courants aériens. »
[Création du monde et de l'homme - GA 354 - Dornach, 9 septembre 1924]
« En effet, ce sang rouge qui circule dans nos veines n’aurait jamais pu se former, si la Terre, au cours de son évolution, n’avait croisé l’orbite d’une autre planète, la planète Mars.Auparavant, il n’y avait pas de fer sur notre globe, donc pas de sang non plus, puisque c’est d’un sang contenant du fer que dépend notre constitution humaine d’aujourd’hui. En fait, l’influence de Mars a été prédominante dans la moitié de l’évolution terrestre, celle de la planète Mercure dans la seconde. Si Mars a donné le fer à notre globe, l’influence de Mercure se manifeste différemment, elle rend l’âme humaine de plus en plus libre, de plus en plus indépendante. »
[Théosophie du Rose-Croix – GA 99 – 7e conférence 31 mai 1907, p.102 ]
« Lors de 4ième ronde la Terre commence à prendre forme. Il se passe un fait d’une grande importance cosmique : la Terre rencontre Mars. Les deux planètes s’interpénètrent, la Terre traverse Mars. Mars avait une matière que la Terre n’avait pas : le fer. Mars a laissé ce fer dans la Terre, sous forme de vapeur. Si cet événement n’avait eu lieu , la Terre serait restée avec ce qu’elle possédait en elle. »
[Introduction à la science de l'occulte, GA 95 — 30 août 1906 — p. 110]
Pour Mars et le fer, voir aussi
[Connaissance du Christ – GA 100 – 26 juin 1907 – p.178]
[Signes et symboles occultes – GA 101 – 28 octobre 1907 – p.120-121]
En résumé :
Les planètes n’ont pas la même consistance que la Terre.
Mars est plus vivante que la Terre.
Mars est une planète ayant une consistance plutôt liquide .
Il y a des êtres vivants sur Mars, des animaux analogues à ceux qui ont vécu sur terre autrefois.
Il y a aussi des sortes d’humains sans os comme ceux qui auraient existé jadis sur terre [en Lémurie].
Les canaux de Mars sont en fait des courants aériens analogues aux vents alizés.
Autrefois, la Terre n’avait pas de fer, c’est Mars qui quand elle était à l’état de vapeur a traversé la Terre et lui a cédé son fer.
À l’époque de Steiner, ces déclarations pouvaient déjà paraître invraisemblables, mais on n’avait aucune preuve directe du contraire. Par contre, depuis que des sondes spatiales ont été envoyées pour étudier Mars de près et que des engins divers se sont posés et ont même roulé sur le sol martien, le doute n’est plus permis. Steiner a encore une fois déduit les caractéristiques de Mars par analogie avec les conditions sur son hypothétique ancienne Lune, et cela ce n’est nullement de la clairvoyance !
Quant au fer que Mars aurait cédé à la Terre, cela ne tient guère la route étant donné les connaissances actuelles concernant la Terre et le système solaire. Le fer existait très certainement sur la terre au moment où elle s’est formée par accrétion, il y a environ 4,5 milliards d’années.
Passons à la planète Vénus.
Vénus
« Mais quand on la dirige [son observation] sur Vénus on arrive dans un monde spirituel, dans un monde purement astral. Ce qui paraît physique dans Vénus n’est pour ainsi dire que le signe extérieur de quelque chose qui vit dans l’astral, dans la lumière astrale. La lumière physique dans Vénus est quelque chose de tout autre que la lumière physique solaire. Celle-ci s’apparente encore à la lumière physique qui peut être produite sur la Terre. Mais il est puéril de prendre la lumière de Vénus pour un reflet de la lumière solaire ; elle brille déjà dans le monde spirituel, et en exposant son âme à cette lumière, on apprend à connaître les Intelligences qui lui sont attachées. »
[Centres initiatiques – Origines – influences, GA 232 – 23 déc. 1923, p. 217-218]
« Vénus ne tient sa lumière que du Soleil. … On ne voit les quartiers de Vénus qu’avec une lunette astronomique. Mais alors se révèle autre chose : la partie sombre de Vénus apparaît également sous un voile mat bleuté, alors qu’elle ne peut recevoir aucune lumière de la Terre. La lumière solaire apparaît sur les phases de Vénus et la partie sombre de Vénus fait apparaître la lumière bleutée….[ Steiner prend ensuite un exemple de substance phosphorescente composée de baryum] …Vous comprenez maintenant d’où provient la lumière bleutée de la partie obscure de Vénus lors de ses phases. Elle absorbe la lumière du Soleil et elle devient phosphorescente, ce qui est visible dans la nuit. …Les gens voyaient autrefois la phosphorescence de Vénus. Mais ils ont également vu les transformations qui apparaissent lorsque Vénus phosphorescente transite devant le Soleil. Ils ont conclu, autrefois, du fait de la transformation du Soleil par le transit de Vénus tous les cent ans, que le temps devait également subir, tous les cent ans, une transformation, un retour des mêmes conditions météorologiques. … Mais cela ne fonctionne évidemment pas… Mais à l’origine les choses étaient correctes, les gens ont vu que tous les cent ans, le transit de Vénus devant le Soleil influençait le temps. »
[Création du monde et de l'homme – Vie sur Terre et action des étoiles. – GA 354 – 13 sep. 1924 – p. 231-232]
Donc :
Il ne faut pas considérer la lumière de Vénus comme un reflet de la lumière solaire
Mais Vénus brille en reflétant la lumière solaire, et la partie obscure visible pendant ses phases est due à un phénomène de phosphorescence.
On ne voit pas les phases à l’œil nu, mais les anciens qui avaient de meilleurs yeux que nous, les voyaient.
Vénus aurait ou aurait eu une influence sur le climat.
On remarquera d’abord la contradiction concernant la lumière de Vénus. Si on peut observer les phases de Vénus dans le ciel la nuit, alors qu’elle ne reçoit pas de lumière réfléchie par la Terre, ce n’est certainement pas, comme dit Steiner, parce qu’elle est phosphorescente. Vénus brille parce qu’elle réfléchit la lumière solaire, tout comme les autres planètes et la Lune, mais comme elle possède une atmosphère dense, celle-ci diffuse la lumière de sa partie éclairée vers les parties non éclairées par le Soleil. Il n’y a aucune preuve que les anciens voyaient mieux que nous. Il se fait surtout qu’en altitude et sous certains climats secs, l’atmosphère est bien plus transparente, ce qui favorise les observations. Quant à une influence de Vénus sur le climat, c’est peu vraisemblable et cela n’a jamais été constaté.
Mercure
D’un point de vue astronomique Steiner ne dit guère de choses au sujet de Mercure. Il critique seulement la relativité d’Einstein. Quand on a vérifié qu’elle permettait d’expliquer la dérive du périhélie de Mercure qui ne s’expliquait pas par la théorie de la gravitation de Newton, Steiner s’est moqué comme d’habitude des puérilités de la science. Le Verrier avait imaginé que ce décalage de la position du périhélie dans le temps pouvait s’expliquer par l’existence d’une planète située entre Mercure et le Soleil, planète qui fut nommée Vulcain. Toutefois, cette planète hypothétique n’a jamais été observée. Vulcain est donc tombée dans l’oubli. Mais bien avant la relativité, Blavatsky avait utilisé le nom de Vulcain pour désigner un des sept états planétaires de l’évolution. Steiner, même s’il les a adaptés à sa conception du monde en a conservé les noms et les caractéristiques principales, c’est-à-dire Saturne, Soleil, Lune, Terre, Jupiter, Vénus et Vulcain. Ce n’est pas la première fois que les occultistes se saisissent d’hypothèses scientifiques qui seront infirmées par la suite. Mais à la différence des scientifiques, les occultistes ne reviennent pratiquement jamais sur ce qu’ils affirment en tant que résultat de la clairvoyance.
Un autre point concernant Mercure, c’est la soi-disant inversion entre les dénominations des planètes Mercure et Vénus. Selon Steiner, à une certaine époque on aurait échangé les noms de ces deux planètes. Parfois il dit que c’est une confusion, parfois il dit qu’il s’agit d’une ruse pour éviter que des secrets occultes ne soient connus !
En réalité, une telle inversion n’a jamais eu lieu. Quand on considère les “planètes” depuis le Soleil, on a l’ordre suivant : Soleil, Mercure, Vénus, Terre, etc., mais quand on les considère depuis la Terre, on a Terre, Vénus, Mercure, Soleil. Or cela ne correspondait pas à l’ordre des sphères de l’astrologie ancienne centrée sur la Terre qui était considérée comme le centre du monde. Steiner a donc imaginé qu’on avait inversé les dénominations. Mais c’est inexact ! En réalité, les anciens astrologues n’étaient pas en mesure de déterminer la distance de la Terre aux planètes. Ce qu’ils observaient c’étaient les rythmes. Le rythme le plus rapide est celui de la Lune environ 28 jours, puis celui de Mercure 88 jours, ensuite celui de Vénus 225 jours, et finalement pour ce qui nous occupe, le Soleil 365 jours. Ainsi, comme les Anciens l’observaient, on a bien l’ordre des sphères Lune, Mercure, Vénus, Soleil, Mars, Jupiter et cela n’a strictement rien à voir avec les distances comme le pensait Steiner.
Voir notamment :
Macrocosme et microcosme – GA 119 – 22 mars 1910, p.62.
Les Hiérarchies spirituelles et leur reflet dans le monde physique – GA 110 – 12 avril 1909, soir p. 58-59
Jupiter
« Jupiter, quant à lui, est presque totalement aérien, mais un air plus épais que le nôtre. Jupiter représente un état vers lequel tendra la Terre à venir. »
[Création du monde et de l'homme – Vie sur Terre et action des étoiles. – GA 354 – 9 sep. 1924 – p. 209]
Naturellement Jupiter n’est pas constitué d’air, mais est constitué en majeure partie d’hydrogène et en moindre quantité d’hélium, gelés, liquides ou gazeux selon la profondeur. Dans la haute atmosphère de Jupiter on a aussi détecté des cristaux d’ammoniac, ainsi que des traces d’autres composés chimiques. Jupiter rayonne plus d’énergie qu’elle n’en reçoit du Soleil. La quantité de chaleur produite à l’intérieur de la planète est presque égale à celle reçue du Soleil en raison des très hautes pressions subies par sa partie centrale. Toutefois, sa température de surface est de l’ordre de la centaine de kelvins. ( ~ – 150° C).
Si Steiner parle d’air, c’est que la prochaine incarnation de la Terre, qu’il appelle Jupiter aura comme substance la plus dense une sorte d’air, et par analogie, notre Jupiter se devait de présenter un état analogue.
Saturne
« Qu’est-ce donc un Saturne ? C’est un globe de chaleur. Vous seriez tout à fait dans l’erreur si, regardant cet astre, vous pensiez pouvoir le comparer à d’autres, tels que Jupiter ou Mars par exemple. Ce que vous voyez dans le ciel, ce n’est qu’un espace chaud ; et si vous pouvez le voir, c’est parce qu’il vous apparaît à travers un espace éclairé. Quel est l’aspect d’un objet non lumineux vu à travers un espace éclairé ? Il a l’air bleu. Il est facile de s’en rendre compte en regardant la flamme d’une bougie. Elle est bleue au centre et entourée d’une sorte d’auréole lumineuse. L’obscurité vue à travers la lumière paraît toujours bleue. J’ai conscience de ce que je dis ; je sais que je risque d’être accusé de dire une absurdité du point de vue de l’optique actuelle, mais il se trouve pourtant à nouveau que cette absurdité est la vérité. Les physiciens d’aujourd’hui ne savent pas pourquoi l’espace céleste paraît si bleu. S’il en est ainsi, c’est parce qu’en réalité il est obscur, noir, mais qu’on le voit à travers un espace éclairé. Tout ce qui est obscur, vu à travers un espace éclairé, semble bleu. De là vient l’aspect bleuâtre de Saturne. Ce que nous disons ici s’accorde pleinement avec les faits scientifiques, mais non avec les théories, les fantasmes qu’on élabore à leur sujet.
Cela nous entraînerait trop loin si je vous expliquais, de ce point de vue, comment s’est formé ce qu’on appelle l’anneau de Saturne. Tout Saturne se compose de trois couches de chaleur ; l’une est neutre, l’autre psychique, la troisième perceptible physiquement. Lorsqu’on regarde ces couches à travers l’espace éclairé, on a l’illusion de voir un globe gazeux entouré d’une sorte d’anneau fait de poussières. Ce n’est là qu’un phénomène d’optique. Aujourd’hui encore, Saturne est un corps composé uniquement de substance calorique. [...] Est Saturne tout corps céleste fait de chaleur, ce qui explique tous les phénomènes qui s’y passent. »
[Les Hiérarchies spirituelles et leur reflet dans le monde physique, GA 110, conférence du 17 avril 1909 au soir, p. 150-151]
« Vous êtes donc, Messieurs, en présence dans la nature, de corps qui d’une part rayonnent et produisent des couleurs claires situées d’un côté de l’arc-en-ciel et, d’autre part, de corps qui ne rayonnent pas mais émettent des ondes bleutées, une couleur qui se situe de l’autre côté de l’arc-en-ciel.
Sachant cela, vous vous direz qu’il existe des astres, comme Mars, par exemple, qui émettent une couleur rougeâtre ou, comme Saturne qui émettent une couleur bleutée. On peut donc lire le comportement d’un astre dans sa composition. Mars est tout simplement un astre qui rayonne, c’est pourquoi il doit paraître jaune-rouge. C’est un astre qui rayonne fortement. Saturne est un corps qui se comporte plus calmement et qui se recouvre d’ondes que l’on va jusqu’à voir autour de lui. Saturne montre même ses ondes autour de lui par ses anneaux. Il paraît bleu parce qu’il s’entoure d’ondes. […]
Dès que nous parlons de Mars, nous devons savoir qu’il s’agit d’un corps céleste qui demande sans cesse à devenir vivant.
En ce qui concerne Saturne, c’est tout différent, Saturne arbore un chatoiement bleuté, c’est-à-dire qu’il ne rayonne pas mais qu’il s’enveloppe d’une nature ondulatoire. Il est tout à l’opposé de Mars. Saturne veut sans cesse entrer dans la mort, devenir cadavre. Saturne s’entoure en quelque sorte d’une luminosité qui montre que son intérieur est obscur, lequel, vu à travers cette luminosité, paraît par conséquent bleuâtre. […]
Saturne est en constant processus de pourrissement ; il pourrit. C’est pourquoi il y a une lueur autour de lui, mais lui-même est obscur et paraît donc bleu, parce que nous regardons, je dirais son obscurité à travers les substances de pourritures dont il s’entoure. Tandis que Mars nous montre qu’il sans cesse à vouloir vivre, Saturne nous montre qu’il tend sans cesse à vouloir mourir.
Il est donc intéressant de considérer les corps célestes sous cet angle et de pouvoir dire que ceux qui paraissent sous un halo bleuté sont voués à l’anéantissement, tandis que ceux qui se présentent sous un halo rougeoyant sont en train d’apparaître. […] Mars est encore un enfant qui ne demande qu’à vivre, alors que Saturne est déjà un vieillard. »
[Rythmes dans le Cosmos et dans l’être humain, GA 350, Dornach, 9 juin 1923, pages 91-94]
« … c’est pour nous le plus grand des bienfaits que les forces de Saturne ne rayonnent pas seulement vers la sphère planétaire terrestre, mais aussi en direction des espaces cosmiques, où elles sont certes bien autre chose que les petits éclats bleus insignifiants visibles de la Terre. Car c’est là que nous apparaît son aura spirituelle. Elle rayonne dans l’espace en direction de l’univers où elle perd même son caractère spatial puisqu’elle pénètre dans un monde qui n’appartient déjà plus à l’espace. De sorte qu’entre la mort et une nouvelle naissance, nous nous tournons avec reconnaissance vers Saturne, la planète la plus lointainede notre système planétaire terrestre, Uranus et Neptune qui se sont jointes à l’ensemble bien plus tard ne sont pas de véritables planètes de notre Terre — en sachant qu’elle n’éclaire pas seulement la Terre, mais aussi les lointains de l’univers, et que c’est grâce à son rayonnement spirituel que nous sommes débarrassés de la pesanteur terrestre, débarrassés des forces physiques du langage et des forces physiques de la pensée. »
[Dornach, le 26 novembre 1922 — GA 219 — Rapport de l'homme au monde des étoiles, EAR]
Autre référence à consulter :
Correspondances entre le microcosme et le macrocosme – GA 201, Dornach 2 mai 1920 – concernant le mouvement du système solaire, Saturne, lemniscate, …
En résumé :
La planète Saturne est uniquement constituée de chaleur.
Les anneaux de Saturne sont aussi constitués de chaleur.
Les physiciens sont victimes d’une illusion d’optique.
Saturne nous apparaît comme un astre bleuâtre.
Saturne est composé de trois couches de chaleur : neutre, psychique et une perceptible physiquement.
Saturne est un astre en train de pourrir.
Saturne est la dernière planète du système solaire.
Ce qui est au-delà de Saturne n’appartient plus à l’espace.
Les physiciens ne savent pas expliquer la couleur bleue du ciel.
Premier os avec Saturne et ses anneaux, c’est qu’il serait constitué uniquement de chaleur. Or la chaleur que nous percevons dans notre univers est soit un rayonnement électromagnétique soit le résultat d’une agitation moléculaire. Une chaleur en soi n’a jamais été observée. C’est un retour à l’ancienne conception du phlogistique, le fluide calorique qui aurait existé en toute chose. Par contre la notion de chaleur neutre n’a aucune signification et Steiner n’a pas daigné expliquer.
Les astrophysiciens et les astronomes ne sont pas victimes d’une illusion d’optique. Saturne, comme Jupiter, est constitué de gaz (hydrogène, hélium, méthane, ammoniac, éthane, etc.) à l’état liquide, et ensuite même à l’état solide à 30.000 km de profondeur. Saturne aurait un petit noyau rocheux dont la température ne devrait pas dépasser les 15.000 °C. Vu sa masse importante, la planète continue à se contracter et se faisant dégage 3 fois plus de chaleur qu’elle n’en reçoit du Soleil. Les sondes Voyager ont révélé que cette atmosphère se compose d’une brume plus dense que celle de Jupiter du fait de sa température inférieure. C’est donc loin d’être une planète constituée de chaleur, même si on prend en considération l’affirmation de Steiner que l’hydrogène serait le gaz le plus apparenté à la chaleur. Une température de surface de l’ordre de – 180°C, c’est plutôt frisquet. La composition de Saturne est par ailleurs assez semblable à celle de Jupiter. Son atmosphère est le siège de tempêtes, et d’orages très longs. Les éclairs émettent des ondes électromagnétiques dix mille fois plus intenses que celles produites par les orages terrestres.
Quant aux anneaux, s’étendant jusqu’à plus de 300.000 km de la planète, ils se composent apparemment d’agrégats de roches, de gaz solidifiés et de glace. Ces agrégats sont de diamètres très variés, allant de 0,0005 cm à environ 10 m. Les anneaux ont une épaisseur n’excédant pas 1 km. Ces anneaux sont nombreux et constitués de sous-anneaux. Certains anneaux semblent brillants du côté éclairé par le Soleil ; en revanche, leur côté opposé est très sombre, car assez dense pour obstruer la majeure partie de la lumière solaire. La chaleur pourrait-elle constituer un obstacle pour la lumière ?
En dehors des anneaux, Saturne possède au moins 56 satellites (en 2006). Le plus gros est Titan. Saturne a lui seul représente 35% de la masse totale des planètes du système solaire.
Ce que Steiner dit de Saturne, est non seulement confus, mais aussi erroné. Ni Saturne, ni ses anneaux ne sont constitués de chaleur. Ceci dit, Saturne n’est bleue que par endroit, aux pôles notamment lors de son hiver, sinon Saturne a une teinte jaune-orange-brun pastel, parcourue par des traînées blanches. Ses couleurs peuvent varier selon ses saisons et les perturbations de son atmosphère. Même à travers un petit télescope, Saturne apparaît jaune pâle avec des nuances ocres-orangées.
On constate aussi que Steiner affirme qu’au-delà de Saturne on sort de l’espace, on peut se demander dans quel milieu circulent les planètes au-delà de Saturne. La sonde Voyager 1 a largement dépassé Pluton et n’appartient donc plus à l’espace, elle voyage dans le néant, mais nous captons encore en 2012 les signaux radio qu’elle nous transmet !
Pourquoi Steiner prétend-t-il que Saturne est constitué de chaleur ? Tout simplement par analogie avec la première incarnation de notre système solaire qui était appelé Saturne (l’ancien Saturne dans la littérature anthroposophique) et qui aurait essentiellement été un globe constitué de pure chaleur. Cet ancien Saturne était aussi qualifié d’obscur. Donc, l’actuelle planète Saturne doit être constituée de chaleur et être obscure puisqu’elle est une reliquat, une sorte de représentant dans notre système, de l’ancien Saturne. Et en vertu de la théorie des couleurs de Goethe, un astre obscur vu à travers un espace éclairé doit paraître bleu. (Sauf qu’en plein jour on ne voit pas Saturne, mais passons, ce n’est qu’une étrangeté de plus, à moins que les ondes de pourritures faites de chaleur soient éclairées par le Soleil et constitue un espace lumineux !). Étant donné la température de Saturne, il est un fameux congélateur, et on peut se demander ce qui pourrait y pourrir !
Les physiciens, en outre, savent aussi expliquer la couleur bleue du ciel.
Pour conclure, tout ce que dit Steiner à propos de Saturne est totalement erroné, et ce qu’il en dit est le résultat d’une analogie avec l’ancien Saturne imaginé par Blavatsky peut-être après avoir lu Héraclite qui disait que tout provenait du feu. On notera aussi la relation entre ces anciens états planétaires et l’ancienne doctrine des 4 éléments : chaleur (Saturne), air-gaz (Soleil), eau-liquide (Lune), terre-solide (Terre).
Steiner considère aussi que Saturne est la dernière planète du système solaire. La raison en est que, comme Blavatsky à laquelle il a emprunté bien des notions, Steiner a construit sa cosmogonie mystique sur le nombre sept. C’est l’ancienne conception astrologique du monde qui ne connaissait que sept planètes (la Lune et le Soleil en faisaient partie). Ainsi, tout ce qui est au-delà de Saturne n’appartient pas à notre système, et il fallait bien en donner une explication comme on va le voir en examinant ses déclarations concernant Uranus et Neptune.
Uranus et Neptune
« Ainsi, il y avait au début de l’évolution de notre Terre, des entités qui étaient à peine capables de poursuivre cette évolution ; elles étaient si jeunes dans leur développement que toute progression aurait entraîné leur perte. Il fallait pour ainsi dire leur attribuer un champ d’action leur permettant de préserver l’intégralité de leur jeunesse. Tous les autres lieux de séjour servent à abriter des entités qui sont déjà plus avancées. Pour celles qui sont nées durant la phase de l’ancienne Lune, et sont donc pour cette raison demeurées à un stade d’évolution très reculé, il a fallu que se détache pour former une planète autonome, un champ d’action qui n’a pratiquement pas de lien avec notre existence terrestre ; il s’est donc formé ce corps céleste que nous appelons Uranus. C’est le champ d’action des entités qui sont demeurées à un niveau d’évolution très retardataire.
Puis l’évolution s’est poursuivie. A l’exception d’Uranus, tout ce qui se trouve dans notre système cosmique est maintenant contenu dans une masse informe ou « soupe » primitive. La mythologie grecque appelle « Chaos » ce qui a précédé la naissance de cet Ouranos ou Uranus. Maintenant, Uranus a pris forme ; le reste est encore demeuré pour ainsi dire dans le chaos auquel sont encore liées d’autres entités, dont le degré de développement d’alors correspondrait à celui où nous autres hommes nous sommes trouvés lorsque notre Terre est passée par l’état de l’ancien Saturne. »
[Intervention des forces spirituelles en l'homme - GA 102 - Berlin, 15 fév. 1908]
« Au temps où Jupiter fut formé par condensation, le retrait de certaines entités a provoqué l’apparition de quelque chose qui n’a rien à faire avec notre évolution terrestre, c’est-à-dire la planète Uranus ; puis lors de la répétition de l’ancienne Lune et la formation de Mars, ce fut la planète Neptune. Les noms d’Uranus et de Neptune n’ont naturellement pas été choisis comme ceux donnés par les Anciens, quoique l’appellation Uranus ait encore un sens, car elle a été attribuée à une époque où l’on avait encore une vague notion de la façon dont ce choix devait se faire. On a donc rassemblé sous ce nom tout ce qui se trouve en dehors de notre cercle.
Ces deux planètes que l’astronomie actuelle considère comme tout à fait semblables aux autres reposent sur une autre base et n’ont au fond pas grand chose à faire avec l’évolution de notre monde. Elles font partie de mondes qui ont apparu parce que certaines entités qui, pendant la période saturnienne, étaient encore en rapport avec nous se sont retirées et ont édifié leur demeure au-dehors. Ceci permet de comprendre certains faits concernant ces planètes, entre autres celui que leurs lunes sont rétrogrades. »
[Les Hiérarchies spirituelles et leur reflet dans le monde physique, GA 110, conférence du 18 avril 1909 au soir, Triades p. 173 ]
« Il faut noter qu’Uranus et Neptune, les deux planètes les plus lointaines que l’astronomie physique compte parmi les planètes de notre système, ne faisaient pas partie de notre système solaire à l’origine.
Elles ne s’en approchèrent que beaucoup plus tard, et furent prises dans le champ d’attraction de notre système ; cela les mit au rang de planètes et elles restèrent dans le système solaire. Nous ne pouvons pas les compter parmi les planètes au même titre que les autres à partir de Saturne qui font en quelque sorte partie de notre système depuis le début. »
[Les entités spirituelles dans les corps célestes... - GA 136 - cf du 14 avril 1912 à Helsingfors]
« Notons qu’Uranus et Neptune n’appartiennent à notre système solaire que du point de vue de l’astronomie : en réalitéils sont des corps venus de l’extérieur qui se sont rattachés à notre système planétaire. On peut donc ne pas tenir compte de ces astres comparables à des hôtes étrangers. »
[Médecine et science spirituelle, GA 312 — 26 mars 1920 — p. 110]
« Ce sont des planètes [Uranus et Neptune] qui, après avoir errés dans l’univers, ont été captées par le système auquel appartient la Terre. »
[L'art de guérir approfondi par la méditation, GA 316 — 23 avril 1924 – p. 187]
« Bien, les Anciens ont, à juste raison, considéré Saturne comme la planète la plus extérieure de notre système solaire. C’est la planète la plus extérieure de notre système solaire. Qu’Uranus et Neptune viennent en plus, cela est pleinement justifié du point de vue de l’astronomie matérialiste, mais elles ont en fait une autre origine, elles n’appartiennent pas au système solaire, de sorte que nous pouvons bien dire que Saturne constitue la limite du système solaire. »
[Les trois rencontres de l'âme humaine, GA 175/1 — 13 mars 1917, EAR p.161]
« De sorte qu’entre la mort et une nouvelle naissance, nous nous tournons avec reconnaissance vers Saturne, la planète la plus lointaine de notre système planétaire terrestre, Uranus et Neptune qui se sont jointes à l’ensemble bien plus tard ne sont pas de véritables planètes de notre Terre… »
[Rapport de l'homme au monde des étoiles- GA 219 - Dornach, 26 nov. 1922]
En résumé :
Ni Uranus, ni Neptune n’appartiennent à notre système solaire.
Uranus s’est détaché de la Terre
Ou encore Uranus et Neptune se sont formés pendant que le système solaire se formait : Uranus en même temps que Jupiter, et Neptune en même temps que Mars.
Cependant Uranus et Neptune ne faisaient pas partie de notre système solaire à l’origine. Elles ne s’en approchèrent que beaucoup plus tard, et furent prises dans le champ d’attraction de notre système.
Uranus et Neptune ne sont pas vraiment des planètes.
Mais cela n’a pas empêché Steiner d’en tenir compte dans les horoscopes, comme on peut le lire dans les conférences :Pédagogie curative, EAR.
Les lunes rétrogrades d’Uranus s’explique du fait que cette planète ne fait pas partie du système solaire.
Uranus a été découverte par William Herschel en 1781. Neptune par Le Verrier en 1846. Le nom d’Uranus a été proposée par Bode. Bode a fait valoir que, tout comme Saturne était le père de Jupiter, la nouvelle planète devrait être nommée d’après le père de Saturne. Vers 1850, ce nom était généralement accepté, mais le symbole d’Uranus a été formé d’après la première lettre du nom de Herschel. Uranus a aussi été appelée Herschel. Uranus et Neptune sont des planètes géantes gazeuses comme Jupiter et Saturne, mais elles sont encore plus froides (-220°C pour Uranus).
Le système solaire ne s’arrête pas à Neptune car l’influence du Soleil s’étend encore bien plus loin. En 1930, on a découvert la petite planète Pluton (et ultérieurement son compagnon Charon), faisant partie de la ceinture de Kuiper (entre 30 et 55 UA) ainsi qu’au moins deux autres planètes naines nommées Makémaké, et Hauméa. Par ailleurs la ceinture de Kuiper est parsemée de débris gelés d’eau, d’ammoniac, et de méthane principalement.
Au-delà se trouve le nuage de Oort (s’étendant jusqu’à environ 154.000 UA) où se trouve notamment la planète naine Éris et l’héliopause limite du système solaire où le vent solaire devient plus faible que le vent galactique. On considère que la limite du nuage de Oort constitue la frontière gravitationnelle du système solaire, et qu’elle se trouve à plus d’une année lumière du Soleil. On admet généralement que le nuage de Oort est à l’origine de la plupart des comètes.
Quand au fait des lunes rétrogrades d’Uranus qui s’expliquerait par la non appartenance à notre système solaire, remarquons que Saturne a aussi une lune rétrograde nommée Phoebé.
On voit que l’influence du Soleil s’étend bien plus loin que la planète Neptune et que l’espace existe encore bel et bien à plus d’une année-lumière du Soleil. En septembre 2012, la sonde Voyager 1 lancée en 1977, se trouvait à 18 milliards de km du Soleil (120 UA), tandis que Voyager 2 se trouvait à la même époque à 98 UA du Soleil, c’est-à-dire respectivement environ 120 et 98 fois la distance Terre-Soleil.
Mais qu’est donc le Soleil pour Steiner ?
Le Soleil
« À la surface de ce globe lumineux [de l'ancien Soleil] et même à l’intérieur, on n’aurait pas seulement perçu de la chaleur, mais des vents, de l’air, des courants gazeux allant en tous sens. C’est ainsi que le globe de chaleur s’est transformé en globe de lumière. Un soleil a pris naissance. C’est à bon droit qu’on l’appelle Soleil, car les soleils aujourd’hui passent encore par ce processus ; à l’intérieur ils sont constitués de courants gazeux et le gaz devient lumièr
opensea.io/collection/dogcolordogs
#628 , DOGS COLOR NFT , darkcyan doggy , darkcyan guard dog , darkcyan police dog , darkcyan dog
# #doggo #dog #puppy #dogs #animal #pet #puppies #animals #doggo #doglover #dogscolor #colordogs #modeldogs #policedog #guarddog #colorfuldogs #pets #darkcyandog #cyanide #cyanideandhappiness #cyan #cyanotype #cyanoseira #CyanogenMod #cyanobacteria #Cyanogen #cyanworlds #cyanosslimming #cyanidekisses #cyanotypes #cyanicnature #cyanidemag #cyanicnaturestampshop #cyanyacht #cyanika #cyanstudiosleeds #cyanondolch #cyanstudios #cyancake #cyanotypeprocess #cyanhair #cyantaeed #cyanometre #cyanyogen #cyanideink #cyanocorax #cyanos #cyanrising
Comet Wirtanen approaching perihelion on 12-11. The comet is now naked-eye visible. It's possible to sight it clearly as a faint-fuzzy patch even under a moonlit sky. It stands out ever clearer using averted vision. No visible color yet, though it does show up strongly on long-exposure photographs. The blue-green color is due to strong emission of Cyanogen [ (CN)₂ ] and diatomic Carbon. (C₂)
My previous image of comet Wirtanen was less than ideal as I was not prepared to shoot in the cold. The weather has been quite unpredictable lately, so I decided to photograph the comet again, this time using a faster lens at a narrower focal length. Good thing I decided to, as it snowed the night after. Plus, it was an opportunity to play with the tripod I got for Christmas early, naughty me. :)
Gear Used:
Camera - Canon EOS 350D
Lens - Canon EF 75-300mm
Tripod - Pedco Ultrapod II
Acquisition Details:
91x6" sub exposures
9.1 minutes total integration time
f/4
ISO-1600
Software:
Adobe Camera Raw
DeepSkyStacker
Adobe Photoshop CS5.1
Processing Details:
Noise reduction, lens correction and a linear tone curve applied in Adobe Camera Raw. Images converted to lossless TIF format and then stacked in Deep Sky Stacker using Stars + Comet Stacking, Kappa-Sigma Clipping and 2x Drizzle. Final stack sent to Photoshop for gradient removal, color correction and a nonlinear stretch. HLVG plugin was applied on "weak" settings to remove the green cast on some stars, comet was masked so green reduction was less in that area. Image finally had a saturation boost applied and was cropped slightly.
PREFACE
My Galaxy S3 is almost two years old now, but even after the appearance of the S4 and recently the S5 I was still feeling like I want to use it as long as possible. Inside is a quad core CPU with 1 GB RAM. Even the S5 only got 4 cores here in Europe and 2 GB RAM is also not that generous, as of my feeling. So one of the main reasons to upgrade would be the full HD display which finally would give me finer detailed text display.
OK my phone is still fast with Cyanogen and a few weeks ago it fell down and unluckily hit a concrete edge and the display cracked. I have seen many display cracks since the appearance of the first iPhone, but this was the first display crack I ever was responsible for. As I didn't feel like spending a few hundred bucks for the repair of an old S3 but also don't want to be forced by that mistake to buy a brand new S5 I googled a bit about that display repair kits and found out that in contrast to the iPhones where the whole display unit needs to be replaced that there is another option for the S3. Just replacing the glass.
I found a DIY here www.ifixit.com/Guide/Samsung+Galaxy+S+III+Broken+Front+Gl...
I got me a repair kit then for about 12 EUR. This kit comes with a few tools (6) a double side glue tape layer (7) and the glass itself (7).
I don't want to repeat all what is said already in the linked DIY guide. So make sure that you read that before you start this procedure yourself.
DISCLAIMER
This article is only for documentation purposes. In no way do I want to encourage you to try that with your phone, nor I gonna be liable if you mess up your phone by any steps you see in this guide here. Try this at YOUR OWN RISK!
INDEX
1 Precondition / Cracks
2 Remove battery, SIM and storage card
3 read the guide
4 heat gun
5 pyrometer
6 tools (the screwdrivers were together in that package but you don't need them until you want to take out the motherboard or whatever you desire)
7 display glass and double-sided S3-shaped adhesive tape - look at this more close; there are a lot of DIY guides recommending to buy just some 3M tape, but in my kit there was a special tape layer in the shape of the original installed one ... on the picture this is the one with the blue protection layer
8 heating up the surface SLOWLY and equally (!)
9 I tried to never let the surface temperature go above 80 °C as I don't want to melt the AMOLED circuits or organic material whatever is inside
10 slowly lift the display glass ... between the glass an the display there is a soft gel layer which slowly will go off (more about that gel layer at the end)
11 heat again and again and take off slowly and heat again ... take care on the bottom of the device as there is a cable for the bottom keys backlight! (just dont stick something in at the bottom more than 2 or 3mm to be safe)
12 the glass is off and I did not crack the display - yeah :) ... now we see residue of the gel layer on the display ... I took this off slowly with the blue plastic tools ... this and cleaning of all the edges was the most time consuming part of all because you will want to be very careful to not damage the sensitive AMOLED display which has no protection at this point anymore
13 heat again - take off the adhesive (black stripe) ... and clean again ... after I cleaned the display surface with a micro fibre towel and display cleaner (no solvents!) ; also take out the metal part for the ear speaker, this one you will have to attach before you glue in the new adhesive layer
14 before you attach the new glass make sure everything is clean and then mount the new adhesive tape ... for this step I went outside to have less of dust (from interior textiles) coming on the display ... but that depends on the weather at your place (humidity binds dust particles; wind is bad!)
14 yes DONE its mounted!
15 and the best news its working - even the multi touch is working flawlessly - to my own surprise I have to admit
16 the old parts
17 Now a word for the gel layer. A lot of DIY guides never mention the gel layer which sits between the display and the glass cover. This was a big surprise to me and I had to find out a way to deal with that by my own as nobody told me before that there is a gel layer I will not be able to reuse. This gel layers main task is to optically link the glass and the display together. If you follow this guide you will loose this gel layer! If you work very carefully this will not be a technical problem, but without a gel layer between the glass and the display this simply means there will be a gap of air. Two surfaces will result in more reflections than one. So after the DIY replacment you will have more visible reflections (like sky) on your display than before. For me that is OK as I save more than 150 bucks with this trade in, but it would have been nice just if someone would have mention that before. So here we go.
RESUME
Despite of spending about 200 EUR for a professional replacement of the whole display unit, the option to exchange just the top glass layer sounds interesting. But beware that this is a dangerous process for your phone. If you are lacking mechanical skills or tools or patience it is very likely that you mess up your delicate hardware. Another point to mention again, you loose the gel layer which prevents major reflections between the glass and the display. Even if you would have that gel layer it might be another challenge to apply it properly with a ultra high vacuum machine. I had none of either, so I have to live without the gel layer now. Still, it took almost 3 hours for me to finish this, but including taking photos and having a small snack break. Patience is the key.
[EDIT after three months:] Slowly but steadily dust particles are locating in the place of the now removed gel layer. This means a negative aesthetic appearance, especially when the display is turned off. In the case of dust particles being big enough (still much less than 1mm) I even observed the particles resulting in false touch detection. This can lead to the unability of controlling the phone by touch gestures. As a temporary curement you will need to knock on the edge of the phone until the particles fall off from the display surface. If you still plan to try this DIY repair I can just emphasize the importance of thorough cleaning not only of the display itself but also on all other parts which will be covered by the glass cover, as all remaining particles have the possiblity to locate in the air gap sooner or later, affecting visual impression and false touch detection.
It was an accident - I thought it looked like a flag so I searched and found this. en.wikipedia.org/wiki/Flag_of_the_Udmurt_Republic
Datos de la toma:
Telescopio T305 mm Riccardi-Honders Astrograph.
Cámara FLI PL29050 (CCD)
Montura Equatorial Astro Physics AP 1200 GTO
Cámara guiado Starlight Express Lodestar
Software de captura MaxIm DL (Cyanogen)
Procesado con Pixinsight
Filtros R-G-B-L-Ha-OIII
Localización: Hacienda los Andes, Chile
Dic-2017
Astrometría
Center (RA, hms): 05h 31m 32.228s
Center (Dec, dms): -67° 16' 20.555"
Size: 1.85 x 1.24 deg
Radius: 1.115 deg
Pixel scale: 1.02 arcsec/pixel
Orientation: Up is 182 degrees E of N
Algunos de los objetos visibles en la fotografía:
NGC 2035
NGC 2034
NGC 2030
NGC 2014
NGC 2020
NGC 2004
NGC 2021
NGC 2011
NGC 1955
NGC 1968
NGC 1940
NGC 1994
NGC 2027
NGC 2062
NGC 2006
Parte de la Gran Nube de Magallanes