flickr-free-ic3d pan white
View allAll Photos Tagged Office+365+internal+use+rights

Better in the large version I think, two shots stitched together and just the right dimensions to fill your screen if you press L.

 

I wanted something quick and easy today. This basically so I could concentrate this evening on the props I need for tomorrow's shot (bound to go wrong now I've hyped it up!) So, a quick drive up into the hills, shoot the view and that would do it.

 

In the event, despite the temperature not being all that bad, around freezing, the wind was really, really strong. The cold really was biting, especially at any exposed extremities (rest assured I had no trouser issues on this particular day, I'm talking about my hands....)

 

The benefit of taking photographs in a near deserted countryside is that should you choose to whimper in pain, well, there's nobody to hear you do so. I let out a few pathetic groans out there I can tell you.

 

Once I'd taken a few shots and packed my gear up, I turned to put away my tripod. One of the plastic leg clasps completely broke off as I did so. My fingers were so cold at this point I was just pleased that it wasn't a finger I saw flying off into the grass! Over-dramatising I realise....

 

When I got back to the office I took an age to thaw out. Even when I felt warmer, my brain was still frozen. I'd wander into rooms and not remember why I came in. Answer with my full name and the company name when taking an internal call (from someone at the next desk), and various other useless things. I started to think what a hopeless employee I was.

 

And then I remembered what things used to be like when I worked for a large bank, in their head office (I was a manager in the complaints department, made redundant in the banking crisis). The staff there were priceless. There was the guy who insisted that 'HD TV was better than your own eyes'. And the girl who told me she'd stopped giving to the Oxfam appeal as 'Oxfam is an African country that just never gets back on its feet.'

 

And then I felt a bit better about myself and my contribution after all!

Pasted from Wikipedia: Bell-Boeing V-22 Osprey

 

• • • • •

 

The Bell-Boeing V-22 Osprey is a multi-mission, military, tiltrotor aircraft with both a vertical takeoff and landing (VTOL), and short takeoff and landing (STOL) capability. It is designed to combine the functionality of a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft.

 

The V-22 originated from the U.S. Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program started in 1981. It was developed jointly by the Bell Helicopter, and Boeing Helicopters team, known as Bell Boeing, which produce the aircraft.[4] The V-22 first flew in 1989, and began years of flight testing and design alterations.

 

The United States Marine Corps began crew training for the Osprey in 2000, and fielded it in 2007. The Osprey's other operator, the U.S. Air Force fielded their version of the tiltrotor in 2009. Since entering service with the U.S. Marine Corps and Air Force, the Osprey has been deployed for combat operations in Iraq and Afghanistan.

 

Contents

 

1 Development

•• 1.1 Early development

•• 1.2 Flight testing and design changes

•• 1.3 Controversy

•• 1.4 Recent development

2 Design

3 Operational history

•• 3.1 US Marine Corps

•• 3.2 US Air Force

•• 3.3 Potential operators

4 Variants

5 Operators

6 Notable accidents

7 Specifications (MV-22B)

8 Notable appearances in media

9 See also

10 References

11 External links

 

Development

 

Early development

 

The failure of the Iran hostage rescue mission in 1980 demonstrated to the United States military a need[5] for "a new type of aircraft, that could not only take off and land vertically but also could carry combat troops, and do so at speed."[6] The U.S. Department of Defense began the Joint-service Vertical take-off/landing Experimental (JVX) aircraft program in 1981, under U.S. Army leadership. Later the U.S. Navy/Marine Corps took the lead.[7][8] The JVX combined requirements from the Marine Corps, Air Force, Army and Navy.[9][10] A request for proposals (RFP) was issued in December 1982 for JVX preliminary design work. Interest in the program was expressed by Aérospatiale, Bell Helicopter, Boeing Vertol, Grumman, Lockheed, and Westland. The DoD pushed for contractors to form teams. Bell partnered with Boeing Vertol. The Bell Boeing team submitted a proposal for a enlarged version of the Bell XV-15 prototype on 17 February 1983. This was the only proposal received and a preliminary design contract was awarded on 26 April 1983.[11][12]

 

The JVX aircraft was designated V-22 Osprey on 15 January 1985; by March that same year the first six prototypes were being produced, and Boeing Vertol was expanded to deal with the project workload.[13][14] Work has been split evenly between Bell and Boeing. Bell Helicopter manufactures and integrates the wing, nacelles, rotors, drive system, tail surfaces, and aft ramp, as well as integrates the Rolls-Royce engines and performs final assembly. Boeing Helicopters manufactures and integrates the fuselage, cockpit, avionics, and flight controls.[4][15] The USMC variant of the Osprey received the MV-22 designation and the Air Force variant received CV-22; reversed from normal procedure to prevent Marine Ospreys from having a conflicting designation with aircraft carriers (CV).[16] Full-scale development of the V-22 tilt-rotor aircraft began in 1986.[2] On 3 May 1986 the Bell-Boeing partnership was awarded a $1.714 billion contract for V-22 aircraft by the Navy, thus at this point the project had acquisition plans with all four arms of the U.S. military.[17]

 

The first V-22 was rolled out with significant media attention in May 1988.[18][19] However the project suffered several political blows. Firstly in the same year, the Army left the program, citing a need to focus its budget on more immediate aviation programs.[20] The project also faced considerable dialogue in the Senate, surviving two votes that both could have resulted in cancellation.[21][22] Despite the Senate's decision, the Department of Defense instructed the Navy not to spend more money on the Osprey.[23] At the same time, the Bush administration sought the cancellation of the project.[23]

 

Flight testing and design changes

 

The first of six MV-22 prototypes first flew on 19 March 1989 in the helicopter mode,[24] and on 14 September 1989 as a fixed-wing plane.[25] The third and fourth prototypes successfully completed the Osprey's first Sea Trials on the USS Wasp in December 1990.[26] However, the fourth and fifth prototypes crashed in 1991-92.[27] Flight tests were resumed in August 1993 after changes were incorporated in the prototypes.[2] From October 1992 until April 1993, Bell and Boeing redesigned the V-22 to reduce empty weight, simplify manufacture and reduce production costs. This redesigned version became the B-model.[28]

 

Flight testing of four full-scale development V-22s began in early 1997 when the first pre-production V-22 was delivered to the Naval Air Warfare Test Center, Naval Air Station Patuxent River, Maryland. The first EMD flight took place on 5 February 1997. The first of four low rate initial production aircraft, ordered on 28 April 1997, was delivered on 27 May 1999. Osprey number 10 completed the program's second Sea Trials, this time from the USS Saipan in January 1999.[2] During external load testing in April 1999, Boeing used a V-22 to lift and transport the M777 howitzer.[29] In 2000, Boeing announced that the V-22 would be fitted with a nose-mounted GAU-19 Gatling gun,[30] but the GAU-19 gun was later canceled.[31]

 

In 2000, there were two further fatal crashes, killing a total of 19 Marines, and the production was again halted while the cause of these crashes was investigated and various parts were redesigned.[32] The V-22 completed its final operational evaluation in June 2005. The evaluation was deemed successful; events included long range deployments, high altitude, desert and shipboard operations. The problems identified in various accidents had been addressed.[33]

 

Controversy

 

The V-22's development process has been long and controversial, partly due to its large cost increases.[34] When the development budget, first planned for $2.5 billion in 1986, increased to a projected $30 billion in 1988, then-Defense Secretary Dick Cheney tried to zero out its funding. He was eventually overruled by Congress.[32] As of 2008, $27 billion have been spent on the Osprey program and another $27.2 billion will be required to complete planned production numbers by the end of the program.[2]

 

The V-22 squadron's former commander at Marine Corps Air Station New River, Lt. Colonel Odin Lieberman, was relieved of duty in 2001 after allegations that he instructed his unit that they needed to falsify maintenance records to make the plane appear more reliable.[2][35] Three officers were later implicated in the falsification scandal.[34]

 

The aircraft is incapable of autorotation, and is therefore unable to land safely in helicopter mode if both engines fail. A director of the Pentagon's testing office in 2005 said that if the Osprey loses power while flying like a helicopter below 1,600 feet (490 m), emergency landings "are not likely to be survivable". But Captain Justin (Moon) McKinney, a V-22 pilot, says that this will not be a problem, "We can turn it into a plane and glide it down, just like a C-130".[31] A complete loss of power would require the failure of both engines, as a drive shaft connects the nacelles through the wing; one engine can power both proprotors.[36] While vortex ring state (VRS) contributed to a deadly V-22 accident, the aircraft is less susceptible to the condition than conventional helicopters and recovers more quickly.[5] The Marines now train new pilots in the recognition of and recovery from VRS and have instituted operational envelope limits and instrumentation to help pilots avoid VRS conditions.[32][37]

 

It was planned in 2000 to equip all V-22s with a nose-mounted Gatling gun, to provide "the V-22 with a strong defensive firepower capability to greatly increase the aircraft's survivability in hostile actions."[30] The nose gun project was canceled however, leading to criticism by retired Marine Corps Commandant General James L. Jones, who is not satisfied with the current V-22 armament.[31] A belly-mounted turret was later installed on some of the first V-22s sent to the War in Afghanistan in 2009.[38]

 

With the first combat deployment of the MV-22 in October 2007, Time Magazine ran an article condemning the aircraft as unsafe, overpriced, and completely inadequate.[31] The Marine Corps, however, responded with the assertion that much of the article's data were dated, obsolete, inaccurate, and reflected expectations that ran too high for any new field of aircraft.[39]

 

Recent development

 

On 28 September 2005, the Pentagon formally approved full-rate production for the V-22.[40] The plan is to boost production from 11 a year to between 24 and 48 a year by 2012. Of the 458 total planned, 360 are for the Marine Corps, 48 for the Navy, and 50 for the Air Force at an average cost of $110 million per aircraft, including development costs.[2] The V-22 had an incremental flyaway cost of $70 million per aircraft in 2007,[3] but the Navy hopes to shave about $10 million off that cost after a five-year production contract starts in 2008.[41]

 

The Bell-Boeing Joint Project Office in Amarillo, Texas will design a new integrated avionics processor to resolve electronics obsolescence issues and add new network capabilities.[42]

 

Design

 

The Osprey is the world's first production tiltrotor aircraft, with one three-bladed proprotor, turboprop engine, and transmission nacelle mounted on each wingtip. It is classified as a powered lift aircraft by the Federal Aviation Administration.[43] For takeoff and landing, it typically operates as a helicopter with the nacelles vertical (rotors horizontal). Once airborne, the nacelles rotate forward 90° in as little as 12 seconds for horizontal flight, converting the V-22 to a more fuel-efficient, higher-speed turboprop airplane. STOL rolling-takeoff and landing capability is achieved by having the nacelles tilted forward up to 45°. For compact storage and transport, the V-22's wing rotates to align, front-to-back, with the fuselage. The proprotors can also fold in a sequence taking 90 seconds.[44]

 

Most Osprey missions will use fixed wing flight 75 percent or more of the time, reducing wear and tear on the aircraft and reducing operational costs.[45] This fixed wing flight is higher than typical helicopter missions allowing longer range line-of-sight communications and so improved command and control.[2] Boeing has stated the V-22 design loses 10% of its vertical lift over a Tiltwing design when operating in helicopter mode because of airflow resistance due to the wings, but that the Tiltrotor design has better short takeoff and landing performance.[46]

 

The V-22 is equipped with a glass cockpit, which incorporates four Multi-function displays (MFDs) and one shared Central Display Unit (CDU), allowing the pilots to display a variety of images including: digimaps centered or decentered on current position, FLIR imagery, primary flight instruments, navigation (TACAN, VOR, ILS, GPS, INS), and system status. The flight director panel of the Cockpit Management System (CMS) allows for fully-coupled (aka: autopilot) functions which will take the aircraft from forward flight into a 50-foot hover with no pilot interaction other than programming the system.[47] The glass cockpit of the canceled CH-46X was derived from the V-22.[48]

 

The V-22 is a fly-by-wire aircraft with triple-redundant flight control systems.[49] With the nacelles pointing straight up in conversion mode at 90° the flight computers command the aircraft to fly like a helicopter, with cyclic forces being applied to a conventional swashplate at the rotor hub. With the nacelles in airplane mode (0°) the flaperons, rudder, and elevator fly the aircraft like an airplane. This is a gradual transition and occurs over the rotation range of the nacelles. The lower the nacelles, the greater effect of the airplane-mode control surfaces.[50] The nacelles can rotate past vertical to 97.5° for rearward flight.[51][52]

 

The Osprey can be armed with one M240 7.62x51mm NATO (.308 in caliber) or M2 .50 in caliber (12.7 mm) machine gun on the loading ramp, that can be fired rearward when the ramp is lowered. A GAU-19 three-barrel .50 in gatling gun mounted below the V-22's nose has also been studied for future upgrade.[31][53] BAE Systems developed a remotely operated turreted weapons system for the V-22,[54] which was installed on half of the first V-22s deployed to Afghanistan in 2009.[38] The 7.62 mm belly gun turret is remotely operated by a gunner inside the aircraft, who acquires targets with a separate pod using color television and forward looking infrared imagery.

 

U.S. Naval Air Systems Command is working on upgrades to increase the maximum speed from 250 knots (460 km/h; 290 mph) to 270 knots (500 km/h; 310 mph), increase helicopter mode altitude limit from 10,000 feet (3,000 m) to 12,000 feet (3,700 m) or 14,000 feet (4,300 m), and increase lift performance.[55]

 

Operational history

 

US Marine Corps

 

Marine Corps crew training on the Osprey has been conducted by VMMT-204 since March 2000. On 3 June 2005, the Marine Corps helicopter squadron Marine Medium Helicopter 263 (HMM-263), stood down to begin the process of transitioning to the MV-22 Osprey.[56] On 8 December 2005, Lieutenant General Amos, commander of the II MEF, accepted the delivery of the first fleet of MV-22s, delivered to HMM-263. The unit reactivated on 3 March 2006 as the first MV-22 squadron and was redesignated VMM-263. On 31 August 2006, VMM-162 (the former HMM-162) followed suit. On 23 March 2007, HMM-266 became Marine Medium Tiltrotor Squadron 266 (VMM-266) at Marine Corps Air Station New River, North Carolina.[57]

 

The Osprey has been replacing existing CH-46 Sea Knight squadrons.[58] The MV-22 reached initial operational capability (IOC) with the U.S. Marine Corps on 13 June 2007.[1] On 10 July 2007 an MV-22 Osprey landed aboard the Royal Navy aircraft carrier, HMS Illustrious in the Atlantic Ocean. This marked the first time a V-22 had landed on any non-U.S. vessel.[59]

 

On 13 April 2007, the U.S. Marine Corps announced that it would be sending ten V-22 aircraft to Iraq, the Osprey's first combat deployment. Marine Corps Commandant, General James Conway, indicated that over 150 Marines would accompany the Osprey set for September deployment to Al-Asad Airfield.[60][61] On 17 September 2007, ten MV-22Bs of VMM-263 left for Iraq aboard the USS Wasp. The decision to use a ship rather than use the Osprey's self-deployment capability was made because of concerns over icing during the North Atlantic portion of the trip, lack of available KC-130s for mid-air refueling, and the availability of the USS Wasp.[62]

 

The Osprey has provided support in Iraq, racking up some 2,000 flight hours over three months with a mission capable availability rate of 68.1% as of late-January 2008.[63] They are primarily used in Iraq's western Anbar province for routine cargo and troop movements, and also for riskier "aero-scout" missions. General David Petraeus, the top U.S. military commander in Iraq, used one to fly around Iraq on Christmas Day 2007 to visit troops.[64] Then-presidential candidate Barack Obama also flew in Ospreys during his high profile 2008 tour of Iraq.[65]

 

The only major problem has been obtaining the necessary spare parts to maintain the aircraft.[66] The V-22 had flown 3,000 sorties totaling 5,200 hours in Iraq as of July 2008.[67] USMC leadership expect to deploy MV-22s to Afghanistan in 2009.[66][68] General George J. Trautman, III praised the increased range of the V-22 over the legacy helicopters in Iraq and said that "it turned his battle space from the size of Texas into the size of Rhode Island."[69]

 

Naval Air Systems Command has devised a temporary fix for sailors to place portable heat shields under Osprey engines to prevent damage to the decks of some of the Navy's smaller amphibious ships, but they determined that a long term solution to the problem would require these decks be redesigned with heat resistant deck coatings, passive thermal barriers and changes in ship structure in order to operate V-22s and F-35Bs.[70]

 

A Government Accountability Office study reported that by January 2009 the Marines had 12 MV-22s operating in Iraq and they managed to successfully complete all assigned missions. The same report found that the V-22 deployments had mission capable rates averaging 57% to 68% and an overall full mission capable rate of only 6%. It also stated that the aircraft had shown weakness in situational awareness, maintenance, shipboard operations and the ability to transport troops and external cargo.[71] That study also concluded that the "deployments confirmed that the V-22’s enhanced speed and range enable personnel and internal cargo to be transported faster and farther than is possible with the legacy helicopters it is replacing".[71]

 

The MV-22 saw its first offensive combat mission, Operation Cobra's Anger on 4 December 2009. Ospreys assisted in inserting 1,000 Marines and 150 Afghan troops into the Now Zad Valley of Helmand Province in southern Afghanistan to disrupt communication and supply lines of the Taliban.[38] In January 2010 the MV-22 Osprey is being sent to Haiti as part of Operation Unified Response relief efforts after the earthquake there. This will be the first use the Marine V-22 in a humanitarian mission.[72]

 

US Air Force

 

The Air Force's first operational CV-22 Osprey was delivered to the 58th Special Operations Wing (58th SOW) at Kirtland Air Force Base, New Mexico on 20 March 2006. This and subsequent aircraft will become part of the 58th SOW's fleet of aircraft used for training pilots and crew members for special operations use.[73] On 16 November 2006, the Air Force officially accepted the CV-22 in a ceremony conducted at Hurlburt Field, Florida.[74]

 

The US Air Force's first operational deployment of the Osprey sent four CV-22s to Mali in November 2008 in support of Exercise Flintlock. The CV-22s flew nonstop from Hurlburt Field, Florida with in-flight refueling.[5] AFSOC declared that the 8th Special Operations Squadron reached Initial Operational Capability on 16 March 2009, with six of its planned nine CV-22s operational.[75]

 

In June 2009, CV-22s of the 8th Special Operations Squadron delivered 43,000 pounds (20,000 kg) of humanitarian supplies to remote villages in Honduras that were not accessible by conventional vehicles.[76] In November 2009, the 8th SO Squadron and its six CV-22s returned from a three-month deployment in Iraq.[77]

 

The first possible combat loss of an Osprey occurred on 9 April, 2010, as a CV-22 went down near Qalat, Zabul Province, Afghanistan, killing four.[78][79]

 

Potential operators

 

In 1999 the V-22 was studied for use in the United Kingdom's Royal Navy,[80] it has been raised several times as a candidate for the role of Maritime Airborne Surveillance and Control (MASC).[81]

 

Israel had shown interest in the purchase of MV-22s, but no order was placed.[82][83] Flightglobal reported in late 2009 that Israel has decided to wait for the CH-53K instead.[84]

 

The V-22 Osprey is a candidate for the Norwegian All Weather Search and Rescue Helicopter (NAWSARH) that is planned to replace the Westland Sea King Mk.43B of the Royal Norwegian Air Force in 2015.[85] The other candidates for the NAWSARH contract of 10-12 helicopters are AgustaWestland AW101 Merlin, Eurocopter EC225, NHIndustries NH90 and Sikorsky S-92.[86]

 

Bell Boeing has made an unsolicited offer of the V-22 for US Army medical evacuation needs.[87] However the Joint Personnel Recovery Agency issued a report that said that a common helicopter design would be needed for both combat recovery and medical evacuation and that the V-22 would not be suitable for recovery missions because of the difficulty of hoist operations and lack of self-defense capabilities.[88]

 

The US Navy remains a potential user of the V-22, but its role and mission with the Navy remains unclear. The latest proposal is to replace the C-2 Greyhound with the V-22 in the fleet logistics role. The V-22 would have the advantage of being able to land on and support non-carriers with rapid delivery of supplies and people between the ships of a taskforce or to ships on patrol beyond helicopter range.[89] Loren B. Thompson of the Lexington Institute has suggested V-22s for use in combat search and rescue and Marine One VIP transport, which also need replacement aircraft.[90]

 

Variants

  

V-22A 

•• Pre-production full-scale development aircraft used for flight testing. These are unofficially considered A-variants after 1993 redesign.[91]

  

HV-22 

•• The U.S. Navy considered an HV-22 to provide combat search and rescue, delivery and retrieval of special warfare teams along with fleet logistic support transport. However, it chose the MH-60S for this role in 1992.[92]

  

SV-22 

•• The proposed anti-submarine warfare Navy variant. The Navy studied the SV-22 in the 1980s to replace S-3 and SH-2 aircraft.[93]

  

MV-22B 

•• Basic U.S. Marine Corps transport; original requirement for 552 (now 360). The Marine Corps is the lead service in the development of the V-22 Osprey. The Marine Corps variant, the MV-22B, is an assault transport for troops, equipment and supplies, capable of operating from ships or from expeditionary airfields ashore. It is replacing the Marine Corps' CH-46E[57] and CH-53D.[94]

  

CV-22B 

•• Air Force variant for the U.S. Special Operations Command (USSOCOM). It will conduct long-range, special operations missions, and is equipped with extra fuel tanks and terrain-following radar.[95][96]

 

Operators

 

 United States

 

United States Air Force

 

•• 8th Special Operations Squadron (8 SOS) at Hurlburt Field, Florida

•• 71st Special Operations Squadron (71 SOS) at Kirtland Air Force Base, New Mexico

•• 20th Special Operations Squadron (20 SOS) at Cannon Air Force Base, New Mexico

 

United States Marine Corps

 

•• VMM-161

•• VMM-162

•• VMM-261

•• VMM-263

•• VMM-264

•• VMM-266

•• VMM-365

•• VMMT-204 - Training squadron

•• VMX-22 - Marine Tiltrotor Operational Test and Evaluation Squadron

 

Notable accidents

 

Main article: Accidents and incidents involving the V-22 Osprey

 

From 1991 to 2000 there were four significant crashes, and a total of 30 fatalities, during testing.[32] Since becoming operational in 2007, the V-22 has had one possible combat loss due to an unknown cause, no losses due to accidents, and seven other notable, but minor, incidents.

 

• On 11 June 1991, a mis-wired flight control system led to two minor injuries when the left nacelle struck the ground while the aircraft was hovering 15 feet (4.6 m) in the air, causing it to bounce and catch fire.[97]

 

• On 20 July 1992, a leaking gearbox led to a fire in the right nacelle, causing the aircraft to drop into the Potomac River in front of an audience of Congressmen and other government officials at Quantico, killing all seven on board and grounding the aircraft for 11 months.[98]

 

• On 8 April 2000, a V-22 loaded with Marines to simulate a rescue, attempted to land at Marana Northwest Regional Airport in Arizona, stalled when its right rotor entered vortex ring state, rolled over, crashed, and exploded, killing all 19 on board.[37]

 

• On 11 December 2000, after a catastrophic hydraulic leak and subsequent software instrument failure, a V-22 fell 1,600 feet (490 m) into a forest in Jacksonville, North Carolina, killing all four aboard. This caused the Marine Corps to ground their fleet of eight V-22s, the second grounding that year.[99][100]

 

Specifications (MV-22B)

 

Data from Boeing Integrated Defense Systems,[101] Naval Air Systems Command,[102] US Air Force CV-22 fact sheet,[95] Norton,[103] and Bell[104]

 

General characteristics

 

Crew: Four (pilot, copilot and two flight engineers)

Capacity: 24 troops (seated), 32 troops (floor loaded) or up to 15,000 lb (6,800 kg) of cargo (dual hook)

Length: 57 ft 4 in (17.5 m)

Rotor diameter: 38 ft 0 in (11.6 m)

Wingspan: 45 ft 10 in (14 m)

Width with rotors: 84 ft 7 in (25.8 m)

Height: 22 ft 1 in/6.73 m; overall with nacelles vertical (17 ft 11 in/5.5 m; at top of tailfins)

Disc area: 2,268 ft² (212 m²)

Wing area: 301.4 ft² (28 m²)

Empty weight: 33,140 lb (15,032 kg)

Loaded weight: 47,500 lb (21,500 kg)

Max takeoff weight: 60,500 lb (27,400 kg)

Powerplant:Rolls-Royce Allison T406/AE 1107C-Liberty turboshafts, 6,150 hp (4,590 kW) each

 

Performance

 

Maximum speed: 250 knots (460 km/h, 290 mph) at sea level / 305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)[105]

Cruise speed: 241 knots (277 mph, 446 km/h) at sea level

Range: 879 nmi (1,011 mi, 1,627 km)

Combat radius: 370 nmi (426 mi, 685 km)

Ferry range: 1,940 nmi (with auxiliary internal fuel tanks)

Service ceiling: 26,000 ft (7,925 m)

Rate of climb: 2,320 ft/min (11.8 m/s)

Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)

Power/mass: 0.259 hp/lb (427 W/kg)

 

Armament

 

• 1× M240 machine gun on ramp, optional

 

Notable appearances in media

 

Main article: Aircraft in fiction#V-22 Osprey

 

See also

 

Elizabeth A. Okoreeh-Baah, USMC - first female to pilot a V-22 Osprey

 

Related development

 

Bell XV-15[106]

Bell/Agusta BA609

Bell Boeing Quad TiltRotor

 

Comparable aircraft

 

Canadair CL-84

LTV XC-142

 

Related lists

 

List of military aircraft of the United States

List of VTOL aircraft

 

References

 

Bibliography

 

• Markman, Steve and Bill Holder. "Bell/Boeing V-22 Osprey Tilt-Engine VTOL Transport (U.S.A.)". Straight Up: A History of Vertical Flight. Schiffer Publishing, 2000. ISBN 0-7643-1204-9.

• Norton, Bill. Bell Boeing V-22 Osprey, Tiltrotor Tactical Transport. Midland Publishing, 2004. ISBN 1-85780-165-2.

 

External links

 

Wikimedia Commons has media related to: V-22 Osprey

 

Official Boeing V-22 site

Official Bell V-22 site

V-22 Osprey web, and www.history.navy.mil/planes/v-22.html

CV-22 fact sheet on USAF site

www.globalsecurity.org/military/systems/aircraft/v-22.htm

www.airforce-technology.com/projects/osprey/

Onward and Upward

"Flight of the Osprey", US Navy video of V-22 operations

Pasted from Wikipedia: Bell-Boeing V-22 Osprey

 

• • • • •

 

The Bell-Boeing V-22 Osprey is a multi-mission, military, tiltrotor aircraft with both a vertical takeoff and landing (VTOL), and short takeoff and landing (STOL) capability. It is designed to combine the functionality of a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft.

 

The V-22 originated from the U.S. Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program started in 1981. It was developed jointly by the Bell Helicopter, and Boeing Helicopters team, known as Bell Boeing, which produce the aircraft.[4] The V-22 first flew in 1989, and began years of flight testing and design alterations.

 

The United States Marine Corps began crew training for the Osprey in 2000, and fielded it in 2007. The Osprey's other operator, the U.S. Air Force fielded their version of the tiltrotor in 2009. Since entering service with the U.S. Marine Corps and Air Force, the Osprey has been deployed for combat operations in Iraq and Afghanistan.

 

Contents

 

1 Development

•• 1.1 Early development

•• 1.2 Flight testing and design changes

•• 1.3 Controversy

•• 1.4 Recent development

2 Design

3 Operational history

•• 3.1 US Marine Corps

•• 3.2 US Air Force

•• 3.3 Potential operators

4 Variants

5 Operators

6 Notable accidents

7 Specifications (MV-22B)

8 Notable appearances in media

9 See also

10 References

11 External links

 

Development

 

Early development

 

The failure of the Iran hostage rescue mission in 1980 demonstrated to the United States military a need[5] for "a new type of aircraft, that could not only take off and land vertically but also could carry combat troops, and do so at speed."[6] The U.S. Department of Defense began the Joint-service Vertical take-off/landing Experimental (JVX) aircraft program in 1981, under U.S. Army leadership. Later the U.S. Navy/Marine Corps took the lead.[7][8] The JVX combined requirements from the Marine Corps, Air Force, Army and Navy.[9][10] A request for proposals (RFP) was issued in December 1982 for JVX preliminary design work. Interest in the program was expressed by Aérospatiale, Bell Helicopter, Boeing Vertol, Grumman, Lockheed, and Westland. The DoD pushed for contractors to form teams. Bell partnered with Boeing Vertol. The Bell Boeing team submitted a proposal for a enlarged version of the Bell XV-15 prototype on 17 February 1983. This was the only proposal received and a preliminary design contract was awarded on 26 April 1983.[11][12]

 

The JVX aircraft was designated V-22 Osprey on 15 January 1985; by March that same year the first six prototypes were being produced, and Boeing Vertol was expanded to deal with the project workload.[13][14] Work has been split evenly between Bell and Boeing. Bell Helicopter manufactures and integrates the wing, nacelles, rotors, drive system, tail surfaces, and aft ramp, as well as integrates the Rolls-Royce engines and performs final assembly. Boeing Helicopters manufactures and integrates the fuselage, cockpit, avionics, and flight controls.[4][15] The USMC variant of the Osprey received the MV-22 designation and the Air Force variant received CV-22; reversed from normal procedure to prevent Marine Ospreys from having a conflicting designation with aircraft carriers (CV).[16] Full-scale development of the V-22 tilt-rotor aircraft began in 1986.[2] On 3 May 1986 the Bell-Boeing partnership was awarded a $1.714 billion contract for V-22 aircraft by the Navy, thus at this point the project had acquisition plans with all four arms of the U.S. military.[17]

 

The first V-22 was rolled out with significant media attention in May 1988.[18][19] However the project suffered several political blows. Firstly in the same year, the Army left the program, citing a need to focus its budget on more immediate aviation programs.[20] The project also faced considerable dialogue in the Senate, surviving two votes that both could have resulted in cancellation.[21][22] Despite the Senate's decision, the Department of Defense instructed the Navy not to spend more money on the Osprey.[23] At the same time, the Bush administration sought the cancellation of the project.[23]

 

Flight testing and design changes

 

The first of six MV-22 prototypes first flew on 19 March 1989 in the helicopter mode,[24] and on 14 September 1989 as a fixed-wing plane.[25] The third and fourth prototypes successfully completed the Osprey's first Sea Trials on the USS Wasp in December 1990.[26] However, the fourth and fifth prototypes crashed in 1991-92.[27] Flight tests were resumed in August 1993 after changes were incorporated in the prototypes.[2] From October 1992 until April 1993, Bell and Boeing redesigned the V-22 to reduce empty weight, simplify manufacture and reduce production costs. This redesigned version became the B-model.[28]

 

Flight testing of four full-scale development V-22s began in early 1997 when the first pre-production V-22 was delivered to the Naval Air Warfare Test Center, Naval Air Station Patuxent River, Maryland. The first EMD flight took place on 5 February 1997. The first of four low rate initial production aircraft, ordered on 28 April 1997, was delivered on 27 May 1999. Osprey number 10 completed the program's second Sea Trials, this time from the USS Saipan in January 1999.[2] During external load testing in April 1999, Boeing used a V-22 to lift and transport the M777 howitzer.[29] In 2000, Boeing announced that the V-22 would be fitted with a nose-mounted GAU-19 Gatling gun,[30] but the GAU-19 gun was later canceled.[31]

 

In 2000, there were two further fatal crashes, killing a total of 19 Marines, and the production was again halted while the cause of these crashes was investigated and various parts were redesigned.[32] The V-22 completed its final operational evaluation in June 2005. The evaluation was deemed successful; events included long range deployments, high altitude, desert and shipboard operations. The problems identified in various accidents had been addressed.[33]

 

Controversy

 

The V-22's development process has been long and controversial, partly due to its large cost increases.[34] When the development budget, first planned for $2.5 billion in 1986, increased to a projected $30 billion in 1988, then-Defense Secretary Dick Cheney tried to zero out its funding. He was eventually overruled by Congress.[32] As of 2008, $27 billion have been spent on the Osprey program and another $27.2 billion will be required to complete planned production numbers by the end of the program.[2]

 

The V-22 squadron's former commander at Marine Corps Air Station New River, Lt. Colonel Odin Lieberman, was relieved of duty in 2001 after allegations that he instructed his unit that they needed to falsify maintenance records to make the plane appear more reliable.[2][35] Three officers were later implicated in the falsification scandal.[34]

 

The aircraft is incapable of autorotation, and is therefore unable to land safely in helicopter mode if both engines fail. A director of the Pentagon's testing office in 2005 said that if the Osprey loses power while flying like a helicopter below 1,600 feet (490 m), emergency landings "are not likely to be survivable". But Captain Justin (Moon) McKinney, a V-22 pilot, says that this will not be a problem, "We can turn it into a plane and glide it down, just like a C-130".[31] A complete loss of power would require the failure of both engines, as a drive shaft connects the nacelles through the wing; one engine can power both proprotors.[36] While vortex ring state (VRS) contributed to a deadly V-22 accident, the aircraft is less susceptible to the condition than conventional helicopters and recovers more quickly.[5] The Marines now train new pilots in the recognition of and recovery from VRS and have instituted operational envelope limits and instrumentation to help pilots avoid VRS conditions.[32][37]

 

It was planned in 2000 to equip all V-22s with a nose-mounted Gatling gun, to provide "the V-22 with a strong defensive firepower capability to greatly increase the aircraft's survivability in hostile actions."[30] The nose gun project was canceled however, leading to criticism by retired Marine Corps Commandant General James L. Jones, who is not satisfied with the current V-22 armament.[31] A belly-mounted turret was later installed on some of the first V-22s sent to the War in Afghanistan in 2009.[38]

 

With the first combat deployment of the MV-22 in October 2007, Time Magazine ran an article condemning the aircraft as unsafe, overpriced, and completely inadequate.[31] The Marine Corps, however, responded with the assertion that much of the article's data were dated, obsolete, inaccurate, and reflected expectations that ran too high for any new field of aircraft.[39]

 

Recent development

 

On 28 September 2005, the Pentagon formally approved full-rate production for the V-22.[40] The plan is to boost production from 11 a year to between 24 and 48 a year by 2012. Of the 458 total planned, 360 are for the Marine Corps, 48 for the Navy, and 50 for the Air Force at an average cost of $110 million per aircraft, including development costs.[2] The V-22 had an incremental flyaway cost of $70 million per aircraft in 2007,[3] but the Navy hopes to shave about $10 million off that cost after a five-year production contract starts in 2008.[41]

 

The Bell-Boeing Joint Project Office in Amarillo, Texas will design a new integrated avionics processor to resolve electronics obsolescence issues and add new network capabilities.[42]

 

Design

 

The Osprey is the world's first production tiltrotor aircraft, with one three-bladed proprotor, turboprop engine, and transmission nacelle mounted on each wingtip. It is classified as a powered lift aircraft by the Federal Aviation Administration.[43] For takeoff and landing, it typically operates as a helicopter with the nacelles vertical (rotors horizontal). Once airborne, the nacelles rotate forward 90° in as little as 12 seconds for horizontal flight, converting the V-22 to a more fuel-efficient, higher-speed turboprop airplane. STOL rolling-takeoff and landing capability is achieved by having the nacelles tilted forward up to 45°. For compact storage and transport, the V-22's wing rotates to align, front-to-back, with the fuselage. The proprotors can also fold in a sequence taking 90 seconds.[44]

 

Most Osprey missions will use fixed wing flight 75 percent or more of the time, reducing wear and tear on the aircraft and reducing operational costs.[45] This fixed wing flight is higher than typical helicopter missions allowing longer range line-of-sight communications and so improved command and control.[2] Boeing has stated the V-22 design loses 10% of its vertical lift over a Tiltwing design when operating in helicopter mode because of airflow resistance due to the wings, but that the Tiltrotor design has better short takeoff and landing performance.[46]

 

The V-22 is equipped with a glass cockpit, which incorporates four Multi-function displays (MFDs) and one shared Central Display Unit (CDU), allowing the pilots to display a variety of images including: digimaps centered or decentered on current position, FLIR imagery, primary flight instruments, navigation (TACAN, VOR, ILS, GPS, INS), and system status. The flight director panel of the Cockpit Management System (CMS) allows for fully-coupled (aka: autopilot) functions which will take the aircraft from forward flight into a 50-foot hover with no pilot interaction other than programming the system.[47] The glass cockpit of the canceled CH-46X was derived from the V-22.[48]

 

The V-22 is a fly-by-wire aircraft with triple-redundant flight control systems.[49] With the nacelles pointing straight up in conversion mode at 90° the flight computers command the aircraft to fly like a helicopter, with cyclic forces being applied to a conventional swashplate at the rotor hub. With the nacelles in airplane mode (0°) the flaperons, rudder, and elevator fly the aircraft like an airplane. This is a gradual transition and occurs over the rotation range of the nacelles. The lower the nacelles, the greater effect of the airplane-mode control surfaces.[50] The nacelles can rotate past vertical to 97.5° for rearward flight.[51][52]

 

The Osprey can be armed with one M240 7.62x51mm NATO (.308 in caliber) or M2 .50 in caliber (12.7 mm) machine gun on the loading ramp, that can be fired rearward when the ramp is lowered. A GAU-19 three-barrel .50 in gatling gun mounted below the V-22's nose has also been studied for future upgrade.[31][53] BAE Systems developed a remotely operated turreted weapons system for the V-22,[54] which was installed on half of the first V-22s deployed to Afghanistan in 2009.[38] The 7.62 mm belly gun turret is remotely operated by a gunner inside the aircraft, who acquires targets with a separate pod using color television and forward looking infrared imagery.

 

U.S. Naval Air Systems Command is working on upgrades to increase the maximum speed from 250 knots (460 km/h; 290 mph) to 270 knots (500 km/h; 310 mph), increase helicopter mode altitude limit from 10,000 feet (3,000 m) to 12,000 feet (3,700 m) or 14,000 feet (4,300 m), and increase lift performance.[55]

 

Operational history

 

US Marine Corps

 

Marine Corps crew training on the Osprey has been conducted by VMMT-204 since March 2000. On 3 June 2005, the Marine Corps helicopter squadron Marine Medium Helicopter 263 (HMM-263), stood down to begin the process of transitioning to the MV-22 Osprey.[56] On 8 December 2005, Lieutenant General Amos, commander of the II MEF, accepted the delivery of the first fleet of MV-22s, delivered to HMM-263. The unit reactivated on 3 March 2006 as the first MV-22 squadron and was redesignated VMM-263. On 31 August 2006, VMM-162 (the former HMM-162) followed suit. On 23 March 2007, HMM-266 became Marine Medium Tiltrotor Squadron 266 (VMM-266) at Marine Corps Air Station New River, North Carolina.[57]

 

The Osprey has been replacing existing CH-46 Sea Knight squadrons.[58] The MV-22 reached initial operational capability (IOC) with the U.S. Marine Corps on 13 June 2007.[1] On 10 July 2007 an MV-22 Osprey landed aboard the Royal Navy aircraft carrier, HMS Illustrious in the Atlantic Ocean. This marked the first time a V-22 had landed on any non-U.S. vessel.[59]

 

On 13 April 2007, the U.S. Marine Corps announced that it would be sending ten V-22 aircraft to Iraq, the Osprey's first combat deployment. Marine Corps Commandant, General James Conway, indicated that over 150 Marines would accompany the Osprey set for September deployment to Al-Asad Airfield.[60][61] On 17 September 2007, ten MV-22Bs of VMM-263 left for Iraq aboard the USS Wasp. The decision to use a ship rather than use the Osprey's self-deployment capability was made because of concerns over icing during the North Atlantic portion of the trip, lack of available KC-130s for mid-air refueling, and the availability of the USS Wasp.[62]

 

The Osprey has provided support in Iraq, racking up some 2,000 flight hours over three months with a mission capable availability rate of 68.1% as of late-January 2008.[63] They are primarily used in Iraq's western Anbar province for routine cargo and troop movements, and also for riskier "aero-scout" missions. General David Petraeus, the top U.S. military commander in Iraq, used one to fly around Iraq on Christmas Day 2007 to visit troops.[64] Then-presidential candidate Barack Obama also flew in Ospreys during his high profile 2008 tour of Iraq.[65]

 

The only major problem has been obtaining the necessary spare parts to maintain the aircraft.[66] The V-22 had flown 3,000 sorties totaling 5,200 hours in Iraq as of July 2008.[67] USMC leadership expect to deploy MV-22s to Afghanistan in 2009.[66][68] General George J. Trautman, III praised the increased range of the V-22 over the legacy helicopters in Iraq and said that "it turned his battle space from the size of Texas into the size of Rhode Island."[69]

 

Naval Air Systems Command has devised a temporary fix for sailors to place portable heat shields under Osprey engines to prevent damage to the decks of some of the Navy's smaller amphibious ships, but they determined that a long term solution to the problem would require these decks be redesigned with heat resistant deck coatings, passive thermal barriers and changes in ship structure in order to operate V-22s and F-35Bs.[70]

 

A Government Accountability Office study reported that by January 2009 the Marines had 12 MV-22s operating in Iraq and they managed to successfully complete all assigned missions. The same report found that the V-22 deployments had mission capable rates averaging 57% to 68% and an overall full mission capable rate of only 6%. It also stated that the aircraft had shown weakness in situational awareness, maintenance, shipboard operations and the ability to transport troops and external cargo.[71] That study also concluded that the "deployments confirmed that the V-22’s enhanced speed and range enable personnel and internal cargo to be transported faster and farther than is possible with the legacy helicopters it is replacing".[71]

 

The MV-22 saw its first offensive combat mission, Operation Cobra's Anger on 4 December 2009. Ospreys assisted in inserting 1,000 Marines and 150 Afghan troops into the Now Zad Valley of Helmand Province in southern Afghanistan to disrupt communication and supply lines of the Taliban.[38] In January 2010 the MV-22 Osprey is being sent to Haiti as part of Operation Unified Response relief efforts after the earthquake there. This will be the first use the Marine V-22 in a humanitarian mission.[72]

 

US Air Force

 

The Air Force's first operational CV-22 Osprey was delivered to the 58th Special Operations Wing (58th SOW) at Kirtland Air Force Base, New Mexico on 20 March 2006. This and subsequent aircraft will become part of the 58th SOW's fleet of aircraft used for training pilots and crew members for special operations use.[73] On 16 November 2006, the Air Force officially accepted the CV-22 in a ceremony conducted at Hurlburt Field, Florida.[74]

 

The US Air Force's first operational deployment of the Osprey sent four CV-22s to Mali in November 2008 in support of Exercise Flintlock. The CV-22s flew nonstop from Hurlburt Field, Florida with in-flight refueling.[5] AFSOC declared that the 8th Special Operations Squadron reached Initial Operational Capability on 16 March 2009, with six of its planned nine CV-22s operational.[75]

 

In June 2009, CV-22s of the 8th Special Operations Squadron delivered 43,000 pounds (20,000 kg) of humanitarian supplies to remote villages in Honduras that were not accessible by conventional vehicles.[76] In November 2009, the 8th SO Squadron and its six CV-22s returned from a three-month deployment in Iraq.[77]

 

The first possible combat loss of an Osprey occurred on 9 April, 2010, as a CV-22 went down near Qalat, Zabul Province, Afghanistan, killing four.[78][79]

 

Potential operators

 

In 1999 the V-22 was studied for use in the United Kingdom's Royal Navy,[80] it has been raised several times as a candidate for the role of Maritime Airborne Surveillance and Control (MASC).[81]

 

Israel had shown interest in the purchase of MV-22s, but no order was placed.[82][83] Flightglobal reported in late 2009 that Israel has decided to wait for the CH-53K instead.[84]

 

The V-22 Osprey is a candidate for the Norwegian All Weather Search and Rescue Helicopter (NAWSARH) that is planned to replace the Westland Sea King Mk.43B of the Royal Norwegian Air Force in 2015.[85] The other candidates for the NAWSARH contract of 10-12 helicopters are AgustaWestland AW101 Merlin, Eurocopter EC225, NHIndustries NH90 and Sikorsky S-92.[86]

 

Bell Boeing has made an unsolicited offer of the V-22 for US Army medical evacuation needs.[87] However the Joint Personnel Recovery Agency issued a report that said that a common helicopter design would be needed for both combat recovery and medical evacuation and that the V-22 would not be suitable for recovery missions because of the difficulty of hoist operations and lack of self-defense capabilities.[88]

 

The US Navy remains a potential user of the V-22, but its role and mission with the Navy remains unclear. The latest proposal is to replace the C-2 Greyhound with the V-22 in the fleet logistics role. The V-22 would have the advantage of being able to land on and support non-carriers with rapid delivery of supplies and people between the ships of a taskforce or to ships on patrol beyond helicopter range.[89] Loren B. Thompson of the Lexington Institute has suggested V-22s for use in combat search and rescue and Marine One VIP transport, which also need replacement aircraft.[90]

 

Variants

  

V-22A 

•• Pre-production full-scale development aircraft used for flight testing. These are unofficially considered A-variants after 1993 redesign.[91]

  

HV-22 

•• The U.S. Navy considered an HV-22 to provide combat search and rescue, delivery and retrieval of special warfare teams along with fleet logistic support transport. However, it chose the MH-60S for this role in 1992.[92]

  

SV-22 

•• The proposed anti-submarine warfare Navy variant. The Navy studied the SV-22 in the 1980s to replace S-3 and SH-2 aircraft.[93]

  

MV-22B 

•• Basic U.S. Marine Corps transport; original requirement for 552 (now 360). The Marine Corps is the lead service in the development of the V-22 Osprey. The Marine Corps variant, the MV-22B, is an assault transport for troops, equipment and supplies, capable of operating from ships or from expeditionary airfields ashore. It is replacing the Marine Corps' CH-46E[57] and CH-53D.[94]

  

CV-22B 

•• Air Force variant for the U.S. Special Operations Command (USSOCOM). It will conduct long-range, special operations missions, and is equipped with extra fuel tanks and terrain-following radar.[95][96]

 

Operators

 

 United States

 

United States Air Force

 

•• 8th Special Operations Squadron (8 SOS) at Hurlburt Field, Florida

•• 71st Special Operations Squadron (71 SOS) at Kirtland Air Force Base, New Mexico

•• 20th Special Operations Squadron (20 SOS) at Cannon Air Force Base, New Mexico

 

United States Marine Corps

 

•• VMM-161

•• VMM-162

•• VMM-261

•• VMM-263

•• VMM-264

•• VMM-266

•• VMM-365

•• VMMT-204 - Training squadron

•• VMX-22 - Marine Tiltrotor Operational Test and Evaluation Squadron

 

Notable accidents

 

Main article: Accidents and incidents involving the V-22 Osprey

 

From 1991 to 2000 there were four significant crashes, and a total of 30 fatalities, during testing.[32] Since becoming operational in 2007, the V-22 has had one possible combat loss due to an unknown cause, no losses due to accidents, and seven other notable, but minor, incidents.

 

• On 11 June 1991, a mis-wired flight control system led to two minor injuries when the left nacelle struck the ground while the aircraft was hovering 15 feet (4.6 m) in the air, causing it to bounce and catch fire.[97]

 

• On 20 July 1992, a leaking gearbox led to a fire in the right nacelle, causing the aircraft to drop into the Potomac River in front of an audience of Congressmen and other government officials at Quantico, killing all seven on board and grounding the aircraft for 11 months.[98]

 

• On 8 April 2000, a V-22 loaded with Marines to simulate a rescue, attempted to land at Marana Northwest Regional Airport in Arizona, stalled when its right rotor entered vortex ring state, rolled over, crashed, and exploded, killing all 19 on board.[37]

 

• On 11 December 2000, after a catastrophic hydraulic leak and subsequent software instrument failure, a V-22 fell 1,600 feet (490 m) into a forest in Jacksonville, North Carolina, killing all four aboard. This caused the Marine Corps to ground their fleet of eight V-22s, the second grounding that year.[99][100]

 

Specifications (MV-22B)

 

Data from Boeing Integrated Defense Systems,[101] Naval Air Systems Command,[102] US Air Force CV-22 fact sheet,[95] Norton,[103] and Bell[104]

 

General characteristics

 

Crew: Four (pilot, copilot and two flight engineers)

Capacity: 24 troops (seated), 32 troops (floor loaded) or up to 15,000 lb (6,800 kg) of cargo (dual hook)

Length: 57 ft 4 in (17.5 m)

Rotor diameter: 38 ft 0 in (11.6 m)

Wingspan: 45 ft 10 in (14 m)

Width with rotors: 84 ft 7 in (25.8 m)

Height: 22 ft 1 in/6.73 m; overall with nacelles vertical (17 ft 11 in/5.5 m; at top of tailfins)

Disc area: 2,268 ft² (212 m²)

Wing area: 301.4 ft² (28 m²)

Empty weight: 33,140 lb (15,032 kg)

Loaded weight: 47,500 lb (21,500 kg)

Max takeoff weight: 60,500 lb (27,400 kg)

Powerplant:Rolls-Royce Allison T406/AE 1107C-Liberty turboshafts, 6,150 hp (4,590 kW) each

 

Performance

 

Maximum speed: 250 knots (460 km/h, 290 mph) at sea level / 305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)[105]

Cruise speed: 241 knots (277 mph, 446 km/h) at sea level

Range: 879 nmi (1,011 mi, 1,627 km)

Combat radius: 370 nmi (426 mi, 685 km)

Ferry range: 1,940 nmi (with auxiliary internal fuel tanks)

Service ceiling: 26,000 ft (7,925 m)

Rate of climb: 2,320 ft/min (11.8 m/s)

Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)

Power/mass: 0.259 hp/lb (427 W/kg)

 

Armament

 

• 1× M240 machine gun on ramp, optional

 

Notable appearances in media

 

Main article: Aircraft in fiction#V-22 Osprey

 

See also

 

Elizabeth A. Okoreeh-Baah, USMC - first female to pilot a V-22 Osprey

 

Related development

 

Bell XV-15[106]

Bell/Agusta BA609

Bell Boeing Quad TiltRotor

 

Comparable aircraft

 

Canadair CL-84

LTV XC-142

 

Related lists

 

List of military aircraft of the United States

List of VTOL aircraft

 

References

 

Bibliography

 

• Markman, Steve and Bill Holder. "Bell/Boeing V-22 Osprey Tilt-Engine VTOL Transport (U.S.A.)". Straight Up: A History of Vertical Flight. Schiffer Publishing, 2000. ISBN 0-7643-1204-9.

• Norton, Bill. Bell Boeing V-22 Osprey, Tiltrotor Tactical Transport. Midland Publishing, 2004. ISBN 1-85780-165-2.

 

External links

 

Wikimedia Commons has media related to: V-22 Osprey

 

Official Boeing V-22 site

Official Bell V-22 site

V-22 Osprey web, and www.history.navy.mil/planes/v-22.html

CV-22 fact sheet on USAF site

www.globalsecurity.org/military/systems/aircraft/v-22.htm

www.airforce-technology.com/projects/osprey/

Onward and Upward

"Flight of the Osprey", US Navy video of V-22 operations

Posted via email to ☛ HoloChromaCinePhotoRamaScope‽: http://cdevers.posterous.com/false-color-osprey-on-boston-common.

 

Pictures kept coming out like this until, Fonzie-stylee, I gave the camera a good solid whack on the side. Yes, that really fixed it.

 

• • • • •

 

Pasted from Wikipedia: Bell-Boeing V-22 Osprey

 

• • • • •

 

The Bell-Boeing V-22 Osprey is a multi-mission, military, tiltrotor aircraft with both a vertical takeoff and landing (VTOL), and short takeoff and landing (STOL) capability. It is designed to combine the functionality of a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft.

 

The V-22 originated from the U.S. Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program started in 1981. It was developed jointly by the Bell Helicopter, and Boeing Helicopters team, known as Bell Boeing, which produce the aircraft.[4] The V-22 first flew in 1989, and began years of flight testing and design alterations.

 

The United States Marine Corps began crew training for the Osprey in 2000, and fielded it in 2007. The Osprey's other operator, the U.S. Air Force fielded their version of the tiltrotor in 2009. Since entering service with the U.S. Marine Corps and Air Force, the Osprey has been deployed for combat operations in Iraq and Afghanistan.

 

Contents

 

1 Development

•• 1.1 Early development

•• 1.2 Flight testing and design changes

•• 1.3 Controversy

•• 1.4 Recent development

2 Design

3 Operational history

•• 3.1 US Marine Corps

•• 3.2 US Air Force

•• 3.3 Potential operators

4 Variants

5 Operators

6 Notable accidents

7 Specifications (MV-22B)

8 Notable appearances in media

9 See also

10 References

11 External links

 

Development

 

Early development

 

The failure of the Iran hostage rescue mission in 1980 demonstrated to the United States military a need[5] for "a new type of aircraft, that could not only take off and land vertically but also could carry combat troops, and do so at speed."[6] The U.S. Department of Defense began the Joint-service Vertical take-off/landing Experimental (JVX) aircraft program in 1981, under U.S. Army leadership. Later the U.S. Navy/Marine Corps took the lead.[7][8] The JVX combined requirements from the Marine Corps, Air Force, Army and Navy.[9][10] A request for proposals (RFP) was issued in December 1982 for JVX preliminary design work. Interest in the program was expressed by Aérospatiale, Bell Helicopter, Boeing Vertol, Grumman, Lockheed, and Westland. The DoD pushed for contractors to form teams. Bell partnered with Boeing Vertol. The Bell Boeing team submitted a proposal for a enlarged version of the Bell XV-15 prototype on 17 February 1983. This was the only proposal received and a preliminary design contract was awarded on 26 April 1983.[11][12]

 

The JVX aircraft was designated V-22 Osprey on 15 January 1985; by March that same year the first six prototypes were being produced, and Boeing Vertol was expanded to deal with the project workload.[13][14] Work has been split evenly between Bell and Boeing. Bell Helicopter manufactures and integrates the wing, nacelles, rotors, drive system, tail surfaces, and aft ramp, as well as integrates the Rolls-Royce engines and performs final assembly. Boeing Helicopters manufactures and integrates the fuselage, cockpit, avionics, and flight controls.[4][15] The USMC variant of the Osprey received the MV-22 designation and the Air Force variant received CV-22; reversed from normal procedure to prevent Marine Ospreys from having a conflicting designation with aircraft carriers (CV).[16] Full-scale development of the V-22 tilt-rotor aircraft began in 1986.[2] On 3 May 1986 the Bell-Boeing partnership was awarded a $1.714 billion contract for V-22 aircraft by the Navy, thus at this point the project had acquisition plans with all four arms of the U.S. military.[17]

 

The first V-22 was rolled out with significant media attention in May 1988.[18][19] However the project suffered several political blows. Firstly in the same year, the Army left the program, citing a need to focus its budget on more immediate aviation programs.[20] The project also faced considerable dialogue in the Senate, surviving two votes that both could have resulted in cancellation.[21][22] Despite the Senate's decision, the Department of Defense instructed the Navy not to spend more money on the Osprey.[23] At the same time, the Bush administration sought the cancellation of the project.[23]

 

Flight testing and design changes

 

The first of six MV-22 prototypes first flew on 19 March 1989 in the helicopter mode,[24] and on 14 September 1989 as a fixed-wing plane.[25] The third and fourth prototypes successfully completed the Osprey's first Sea Trials on the USS Wasp in December 1990.[26] However, the fourth and fifth prototypes crashed in 1991-92.[27] Flight tests were resumed in August 1993 after changes were incorporated in the prototypes.[2] From October 1992 until April 1993, Bell and Boeing redesigned the V-22 to reduce empty weight, simplify manufacture and reduce production costs. This redesigned version became the B-model.[28]

 

Flight testing of four full-scale development V-22s began in early 1997 when the first pre-production V-22 was delivered to the Naval Air Warfare Test Center, Naval Air Station Patuxent River, Maryland. The first EMD flight took place on 5 February 1997. The first of four low rate initial production aircraft, ordered on 28 April 1997, was delivered on 27 May 1999. Osprey number 10 completed the program's second Sea Trials, this time from the USS Saipan in January 1999.[2] During external load testing in April 1999, Boeing used a V-22 to lift and transport the M777 howitzer.[29] In 2000, Boeing announced that the V-22 would be fitted with a nose-mounted GAU-19 Gatling gun,[30] but the GAU-19 gun was later canceled.[31]

 

In 2000, there were two further fatal crashes, killing a total of 19 Marines, and the production was again halted while the cause of these crashes was investigated and various parts were redesigned.[32] The V-22 completed its final operational evaluation in June 2005. The evaluation was deemed successful; events included long range deployments, high altitude, desert and shipboard operations. The problems identified in various accidents had been addressed.[33]

 

Controversy

 

The V-22's development process has been long and controversial, partly due to its large cost increases.[34] When the development budget, first planned for $2.5 billion in 1986, increased to a projected $30 billion in 1988, then-Defense Secretary Dick Cheney tried to zero out its funding. He was eventually overruled by Congress.[32] As of 2008, $27 billion have been spent on the Osprey program and another $27.2 billion will be required to complete planned production numbers by the end of the program.[2]

 

The V-22 squadron's former commander at Marine Corps Air Station New River, Lt. Colonel Odin Lieberman, was relieved of duty in 2001 after allegations that he instructed his unit that they needed to falsify maintenance records to make the plane appear more reliable.[2][35] Three officers were later implicated in the falsification scandal.[34]

 

The aircraft is incapable of autorotation, and is therefore unable to land safely in helicopter mode if both engines fail. A director of the Pentagon's testing office in 2005 said that if the Osprey loses power while flying like a helicopter below 1,600 feet (490 m), emergency landings "are not likely to be survivable". But Captain Justin (Moon) McKinney, a V-22 pilot, says that this will not be a problem, "We can turn it into a plane and glide it down, just like a C-130".[31] A complete loss of power would require the failure of both engines, as a drive shaft connects the nacelles through the wing; one engine can power both proprotors.[36] While vortex ring state (VRS) contributed to a deadly V-22 accident, the aircraft is less susceptible to the condition than conventional helicopters and recovers more quickly.[5] The Marines now train new pilots in the recognition of and recovery from VRS and have instituted operational envelope limits and instrumentation to help pilots avoid VRS conditions.[32][37]

 

It was planned in 2000 to equip all V-22s with a nose-mounted Gatling gun, to provide "the V-22 with a strong defensive firepower capability to greatly increase the aircraft's survivability in hostile actions."[30] The nose gun project was canceled however, leading to criticism by retired Marine Corps Commandant General James L. Jones, who is not satisfied with the current V-22 armament.[31] A belly-mounted turret was later installed on some of the first V-22s sent to the War in Afghanistan in 2009.[38]

 

With the first combat deployment of the MV-22 in October 2007, Time Magazine ran an article condemning the aircraft as unsafe, overpriced, and completely inadequate.[31] The Marine Corps, however, responded with the assertion that much of the article's data were dated, obsolete, inaccurate, and reflected expectations that ran too high for any new field of aircraft.[39]

 

Recent development

 

On 28 September 2005, the Pentagon formally approved full-rate production for the V-22.[40] The plan is to boost production from 11 a year to between 24 and 48 a year by 2012. Of the 458 total planned, 360 are for the Marine Corps, 48 for the Navy, and 50 for the Air Force at an average cost of $110 million per aircraft, including development costs.[2] The V-22 had an incremental flyaway cost of $70 million per aircraft in 2007,[3] but the Navy hopes to shave about $10 million off that cost after a five-year production contract starts in 2008.[41]

 

The Bell-Boeing Joint Project Office in Amarillo, Texas will design a new integrated avionics processor to resolve electronics obsolescence issues and add new network capabilities.[42]

 

Design

 

The Osprey is the world's first production tiltrotor aircraft, with one three-bladed proprotor, turboprop engine, and transmission nacelle mounted on each wingtip. It is classified as a powered lift aircraft by the Federal Aviation Administration.[43] For takeoff and landing, it typically operates as a helicopter with the nacelles vertical (rotors horizontal). Once airborne, the nacelles rotate forward 90° in as little as 12 seconds for horizontal flight, converting the V-22 to a more fuel-efficient, higher-speed turboprop airplane. STOL rolling-takeoff and landing capability is achieved by having the nacelles tilted forward up to 45°. For compact storage and transport, the V-22's wing rotates to align, front-to-back, with the fuselage. The proprotors can also fold in a sequence taking 90 seconds.[44]

 

Most Osprey missions will use fixed wing flight 75 percent or more of the time, reducing wear and tear on the aircraft and reducing operational costs.[45] This fixed wing flight is higher than typical helicopter missions allowing longer range line-of-sight communications and so improved command and control.[2] Boeing has stated the V-22 design loses 10% of its vertical lift over a Tiltwing design when operating in helicopter mode because of airflow resistance due to the wings, but that the Tiltrotor design has better short takeoff and landing performance.[46]

 

The V-22 is equipped with a glass cockpit, which incorporates four Multi-function displays (MFDs) and one shared Central Display Unit (CDU), allowing the pilots to display a variety of images including: digimaps centered or decentered on current position, FLIR imagery, primary flight instruments, navigation (TACAN, VOR, ILS, GPS, INS), and system status. The flight director panel of the Cockpit Management System (CMS) allows for fully-coupled (aka: autopilot) functions which will take the aircraft from forward flight into a 50-foot hover with no pilot interaction other than programming the system.[47] The glass cockpit of the canceled CH-46X was derived from the V-22.[48]

 

The V-22 is a fly-by-wire aircraft with triple-redundant flight control systems.[49] With the nacelles pointing straight up in conversion mode at 90° the flight computers command the aircraft to fly like a helicopter, with cyclic forces being applied to a conventional swashplate at the rotor hub. With the nacelles in airplane mode (0°) the flaperons, rudder, and elevator fly the aircraft like an airplane. This is a gradual transition and occurs over the rotation range of the nacelles. The lower the nacelles, the greater effect of the airplane-mode control surfaces.[50] The nacelles can rotate past vertical to 97.5° for rearward flight.[51][52]

 

The Osprey can be armed with one M240 7.62x51mm NATO (.308 in caliber) or M2 .50 in caliber (12.7 mm) machine gun on the loading ramp, that can be fired rearward when the ramp is lowered. A GAU-19 three-barrel .50 in gatling gun mounted below the V-22's nose has also been studied for future upgrade.[31][53] BAE Systems developed a remotely operated turreted weapons system for the V-22,[54] which was installed on half of the first V-22s deployed to Afghanistan in 2009.[38] The 7.62 mm belly gun turret is remotely operated by a gunner inside the aircraft, who acquires targets with a separate pod using color television and forward looking infrared imagery.

 

U.S. Naval Air Systems Command is working on upgrades to increase the maximum speed from 250 knots (460 km/h; 290 mph) to 270 knots (500 km/h; 310 mph), increase helicopter mode altitude limit from 10,000 feet (3,000 m) to 12,000 feet (3,700 m) or 14,000 feet (4,300 m), and increase lift performance.[55]

 

Operational history

 

US Marine Corps

 

Marine Corps crew training on the Osprey has been conducted by VMMT-204 since March 2000. On 3 June 2005, the Marine Corps helicopter squadron Marine Medium Helicopter 263 (HMM-263), stood down to begin the process of transitioning to the MV-22 Osprey.[56] On 8 December 2005, Lieutenant General Amos, commander of the II MEF, accepted the delivery of the first fleet of MV-22s, delivered to HMM-263. The unit reactivated on 3 March 2006 as the first MV-22 squadron and was redesignated VMM-263. On 31 August 2006, VMM-162 (the former HMM-162) followed suit. On 23 March 2007, HMM-266 became Marine Medium Tiltrotor Squadron 266 (VMM-266) at Marine Corps Air Station New River, North Carolina.[57]

 

The Osprey has been replacing existing CH-46 Sea Knight squadrons.[58] The MV-22 reached initial operational capability (IOC) with the U.S. Marine Corps on 13 June 2007.[1] On 10 July 2007 an MV-22 Osprey landed aboard the Royal Navy aircraft carrier, HMS Illustrious in the Atlantic Ocean. This marked the first time a V-22 had landed on any non-U.S. vessel.[59]

 

On 13 April 2007, the U.S. Marine Corps announced that it would be sending ten V-22 aircraft to Iraq, the Osprey's first combat deployment. Marine Corps Commandant, General James Conway, indicated that over 150 Marines would accompany the Osprey set for September deployment to Al-Asad Airfield.[60][61] On 17 September 2007, ten MV-22Bs of VMM-263 left for Iraq aboard the USS Wasp. The decision to use a ship rather than use the Osprey's self-deployment capability was made because of concerns over icing during the North Atlantic portion of the trip, lack of available KC-130s for mid-air refueling, and the availability of the USS Wasp.[62]

 

The Osprey has provided support in Iraq, racking up some 2,000 flight hours over three months with a mission capable availability rate of 68.1% as of late-January 2008.[63] They are primarily used in Iraq's western Anbar province for routine cargo and troop movements, and also for riskier "aero-scout" missions. General David Petraeus, the top U.S. military commander in Iraq, used one to fly around Iraq on Christmas Day 2007 to visit troops.[64] Then-presidential candidate Barack Obama also flew in Ospreys during his high profile 2008 tour of Iraq.[65]

 

The only major problem has been obtaining the necessary spare parts to maintain the aircraft.[66] The V-22 had flown 3,000 sorties totaling 5,200 hours in Iraq as of July 2008.[67] USMC leadership expect to deploy MV-22s to Afghanistan in 2009.[66][68] General George J. Trautman, III praised the increased range of the V-22 over the legacy helicopters in Iraq and said that "it turned his battle space from the size of Texas into the size of Rhode Island."[69]

 

Naval Air Systems Command has devised a temporary fix for sailors to place portable heat shields under Osprey engines to prevent damage to the decks of some of the Navy's smaller amphibious ships, but they determined that a long term solution to the problem would require these decks be redesigned with heat resistant deck coatings, passive thermal barriers and changes in ship structure in order to operate V-22s and F-35Bs.[70]

 

A Government Accountability Office study reported that by January 2009 the Marines had 12 MV-22s operating in Iraq and they managed to successfully complete all assigned missions. The same report found that the V-22 deployments had mission capable rates averaging 57% to 68% and an overall full mission capable rate of only 6%. It also stated that the aircraft had shown weakness in situational awareness, maintenance, shipboard operations and the ability to transport troops and external cargo.[71] That study also concluded that the "deployments confirmed that the V-22’s enhanced speed and range enable personnel and internal cargo to be transported faster and farther than is possible with the legacy helicopters it is replacing".[71]

 

The MV-22 saw its first offensive combat mission, Operation Cobra's Anger on 4 December 2009. Ospreys assisted in inserting 1,000 Marines and 150 Afghan troops into the Now Zad Valley of Helmand Province in southern Afghanistan to disrupt communication and supply lines of the Taliban.[38] In January 2010 the MV-22 Osprey is being sent to Haiti as part of Operation Unified Response relief efforts after the earthquake there. This will be the first use the Marine V-22 in a humanitarian mission.[72]

 

US Air Force

 

The Air Force's first operational CV-22 Osprey was delivered to the 58th Special Operations Wing (58th SOW) at Kirtland Air Force Base, New Mexico on 20 March 2006. This and subsequent aircraft will become part of the 58th SOW's fleet of aircraft used for training pilots and crew members for special operations use.[73] On 16 November 2006, the Air Force officially accepted the CV-22 in a ceremony conducted at Hurlburt Field, Florida.[74]

 

The US Air Force's first operational deployment of the Osprey sent four CV-22s to Mali in November 2008 in support of Exercise Flintlock. The CV-22s flew nonstop from Hurlburt Field, Florida with in-flight refueling.[5] AFSOC declared that the 8th Special Operations Squadron reached Initial Operational Capability on 16 March 2009, with six of its planned nine CV-22s operational.[75]

 

In June 2009, CV-22s of the 8th Special Operations Squadron delivered 43,000 pounds (20,000 kg) of humanitarian supplies to remote villages in Honduras that were not accessible by conventional vehicles.[76] In November 2009, the 8th SO Squadron and its six CV-22s returned from a three-month deployment in Iraq.[77]

 

The first possible combat loss of an Osprey occurred on 9 April, 2010, as a CV-22 went down near Qalat, Zabul Province, Afghanistan, killing four.[78][79]

 

Potential operators

 

In 1999 the V-22 was studied for use in the United Kingdom's Royal Navy,[80] it has been raised several times as a candidate for the role of Maritime Airborne Surveillance and Control (MASC).[81]

 

Israel had shown interest in the purchase of MV-22s, but no order was placed.[82][83] Flightglobal reported in late 2009 that Israel has decided to wait for the CH-53K instead.[84]

 

The V-22 Osprey is a candidate for the Norwegian All Weather Search and Rescue Helicopter (NAWSARH) that is planned to replace the Westland Sea King Mk.43B of the Royal Norwegian Air Force in 2015.[85] The other candidates for the NAWSARH contract of 10-12 helicopters are AgustaWestland AW101 Merlin, Eurocopter EC225, NHIndustries NH90 and Sikorsky S-92.[86]

 

Bell Boeing has made an unsolicited offer of the V-22 for US Army medical evacuation needs.[87] However the Joint Personnel Recovery Agency issued a report that said that a common helicopter design would be needed for both combat recovery and medical evacuation and that the V-22 would not be suitable for recovery missions because of the difficulty of hoist operations and lack of self-defense capabilities.[88]

 

The US Navy remains a potential user of the V-22, but its role and mission with the Navy remains unclear. The latest proposal is to replace the C-2 Greyhound with the V-22 in the fleet logistics role. The V-22 would have the advantage of being able to land on and support non-carriers with rapid delivery of supplies and people between the ships of a taskforce or to ships on patrol beyond helicopter range.[89] Loren B. Thompson of the Lexington Institute has suggested V-22s for use in combat search and rescue and Marine One VIP transport, which also need replacement aircraft.[90]

 

Variants

  

V-22A 

•• Pre-production full-scale development aircraft used for flight testing. These are unofficially considered A-variants after 1993 redesign.[91]

  

HV-22 

•• The U.S. Navy considered an HV-22 to provide combat search and rescue, delivery and retrieval of special warfare teams along with fleet logistic support transport. However, it chose the MH-60S for this role in 1992.[92]

  

SV-22 

•• The proposed anti-submarine warfare Navy variant. The Navy studied the SV-22 in the 1980s to replace S-3 and SH-2 aircraft.[93]

  

MV-22B 

•• Basic U.S. Marine Corps transport; original requirement for 552 (now 360). The Marine Corps is the lead service in the development of the V-22 Osprey. The Marine Corps variant, the MV-22B, is an assault transport for troops, equipment and supplies, capable of operating from ships or from expeditionary airfields ashore. It is replacing the Marine Corps' CH-46E[57] and CH-53D.[94]

  

CV-22B 

•• Air Force variant for the U.S. Special Operations Command (USSOCOM). It will conduct long-range, special operations missions, and is equipped with extra fuel tanks and terrain-following radar.[95][96]

 

Operators

 

 United States

 

United States Air Force

 

•• 8th Special Operations Squadron (8 SOS) at Hurlburt Field, Florida

•• 71st Special Operations Squadron (71 SOS) at Kirtland Air Force Base, New Mexico

•• 20th Special Operations Squadron (20 SOS) at Cannon Air Force Base, New Mexico

 

United States Marine Corps

 

•• VMM-161

•• VMM-162

•• VMM-261

•• VMM-263

•• VMM-264

•• VMM-266

•• VMM-365

•• VMMT-204 - Training squadron

•• VMX-22 - Marine Tiltrotor Operational Test and Evaluation Squadron

 

Notable accidents

 

Main article: Accidents and incidents involving the V-22 Osprey

 

From 1991 to 2000 there were four significant crashes, and a total of 30 fatalities, during testing.[32] Since becoming operational in 2007, the V-22 has had one possible combat loss due to an unknown cause, no losses due to accidents, and seven other notable, but minor, incidents.

 

• On 11 June 1991, a mis-wired flight control system led to two minor injuries when the left nacelle struck the ground while the aircraft was hovering 15 feet (4.6 m) in the air, causing it to bounce and catch fire.[97]

 

• On 20 July 1992, a leaking gearbox led to a fire in the right nacelle, causing the aircraft to drop into the Potomac River in front of an audience of Congressmen and other government officials at Quantico, killing all seven on board and grounding the aircraft for 11 months.[98]

 

• On 8 April 2000, a V-22 loaded with Marines to simulate a rescue, attempted to land at Marana Northwest Regional Airport in Arizona, stalled when its right rotor entered vortex ring state, rolled over, crashed, and exploded, killing all 19 on board.[37]

 

• On 11 December 2000, after a catastrophic hydraulic leak and subsequent software instrument failure, a V-22 fell 1,600 feet (490 m) into a forest in Jacksonville, North Carolina, killing all four aboard. This caused the Marine Corps to ground their fleet of eight V-22s, the second grounding that year.[99][100]

 

Specifications (MV-22B)

 

Data from Boeing Integrated Defense Systems,[101] Naval Air Systems Command,[102] US Air Force CV-22 fact sheet,[95] Norton,[103] and Bell[104]

 

General characteristics

 

Crew: Four (pilot, copilot and two flight engineers)

Capacity: 24 troops (seated), 32 troops (floor loaded) or up to 15,000 lb (6,800 kg) of cargo (dual hook)

Length: 57 ft 4 in (17.5 m)

Rotor diameter: 38 ft 0 in (11.6 m)

Wingspan: 45 ft 10 in (14 m)

Width with rotors: 84 ft 7 in (25.8 m)

Height: 22 ft 1 in/6.73 m; overall with nacelles vertical (17 ft 11 in/5.5 m; at top of tailfins)

Disc area: 2,268 ft² (212 m²)

Wing area: 301.4 ft² (28 m²)

Empty weight: 33,140 lb (15,032 kg)

Loaded weight: 47,500 lb (21,500 kg)

Max takeoff weight: 60,500 lb (27,400 kg)

Powerplant:Rolls-Royce Allison T406/AE 1107C-Liberty turboshafts, 6,150 hp (4,590 kW) each

 

Performance

 

Maximum speed: 250 knots (460 km/h, 290 mph) at sea level / 305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)[105]

Cruise speed: 241 knots (277 mph, 446 km/h) at sea level

Range: 879 nmi (1,011 mi, 1,627 km)

Combat radius: 370 nmi (426 mi, 685 km)

Ferry range: 1,940 nmi (with auxiliary internal fuel tanks)

Service ceiling: 26,000 ft (7,925 m)

Rate of climb: 2,320 ft/min (11.8 m/s)

Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)

Power/mass: 0.259 hp/lb (427 W/kg)

 

Armament

 

• 1× M240 machine gun on ramp, optional

 

Notable appearances in media

 

Main article: Aircraft in fiction#V-22 Osprey

 

See also

 

Elizabeth A. Okoreeh-Baah, USMC - first female to pilot a V-22 Osprey

 

Related development

 

Bell XV-15[106]

Bell/Agusta BA609

Bell Boeing Quad TiltRotor

 

Comparable aircraft

 

Canadair CL-84

LTV XC-142

 

Related lists

 

List of military aircraft of the United States

List of VTOL aircraft

 

References

 

Bibliography

 

• Markman, Steve and Bill Holder. "Bell/Boeing V-22 Osprey Tilt-Engine VTOL Transport (U.S.A.)". Straight Up: A History of Vertical Flight. Schiffer Publishing, 2000. ISBN 0-7643-1204-9.

• Norton, Bill. Bell Boeing V-22 Osprey, Tiltrotor Tactical Transport. Midland Publishing, 2004. ISBN 1-85780-165-2.

 

External links

 

Wikimedia Commons has media related to: V-22 Osprey

 

Official Boeing V-22 site

Official Bell V-22 site

V-22 Osprey web, and www.history.navy.mil/planes/v-22.html

CV-22 fact sheet on USAF site

www.globalsecurity.org/military/systems/aircraft/v-22.htm

www.airforce-technology.com/projects/osprey/

Onward and Upward

"Flight of the Osprey", US Navy video of V-22 operations

Pasted from Wikipedia: Bell-Boeing V-22 Osprey

 

• • • • •

 

The Bell-Boeing V-22 Osprey is a multi-mission, military, tiltrotor aircraft with both a vertical takeoff and landing (VTOL), and short takeoff and landing (STOL) capability. It is designed to combine the functionality of a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft.

 

The V-22 originated from the U.S. Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program started in 1981. It was developed jointly by the Bell Helicopter, and Boeing Helicopters team, known as Bell Boeing, which produce the aircraft.[4] The V-22 first flew in 1989, and began years of flight testing and design alterations.

 

The United States Marine Corps began crew training for the Osprey in 2000, and fielded it in 2007. The Osprey's other operator, the U.S. Air Force fielded their version of the tiltrotor in 2009. Since entering service with the U.S. Marine Corps and Air Force, the Osprey has been deployed for combat operations in Iraq and Afghanistan.

 

Contents

 

1 Development

•• 1.1 Early development

•• 1.2 Flight testing and design changes

•• 1.3 Controversy

•• 1.4 Recent development

2 Design

3 Operational history

•• 3.1 US Marine Corps

•• 3.2 US Air Force

•• 3.3 Potential operators

4 Variants

5 Operators

6 Notable accidents

7 Specifications (MV-22B)

8 Notable appearances in media

9 See also

10 References

11 External links

 

Development

 

Early development

 

The failure of the Iran hostage rescue mission in 1980 demonstrated to the United States military a need[5] for "a new type of aircraft, that could not only take off and land vertically but also could carry combat troops, and do so at speed."[6] The U.S. Department of Defense began the Joint-service Vertical take-off/landing Experimental (JVX) aircraft program in 1981, under U.S. Army leadership. Later the U.S. Navy/Marine Corps took the lead.[7][8] The JVX combined requirements from the Marine Corps, Air Force, Army and Navy.[9][10] A request for proposals (RFP) was issued in December 1982 for JVX preliminary design work. Interest in the program was expressed by Aérospatiale, Bell Helicopter, Boeing Vertol, Grumman, Lockheed, and Westland. The DoD pushed for contractors to form teams. Bell partnered with Boeing Vertol. The Bell Boeing team submitted a proposal for a enlarged version of the Bell XV-15 prototype on 17 February 1983. This was the only proposal received and a preliminary design contract was awarded on 26 April 1983.[11][12]

 

The JVX aircraft was designated V-22 Osprey on 15 January 1985; by March that same year the first six prototypes were being produced, and Boeing Vertol was expanded to deal with the project workload.[13][14] Work has been split evenly between Bell and Boeing. Bell Helicopter manufactures and integrates the wing, nacelles, rotors, drive system, tail surfaces, and aft ramp, as well as integrates the Rolls-Royce engines and performs final assembly. Boeing Helicopters manufactures and integrates the fuselage, cockpit, avionics, and flight controls.[4][15] The USMC variant of the Osprey received the MV-22 designation and the Air Force variant received CV-22; reversed from normal procedure to prevent Marine Ospreys from having a conflicting designation with aircraft carriers (CV).[16] Full-scale development of the V-22 tilt-rotor aircraft began in 1986.[2] On 3 May 1986 the Bell-Boeing partnership was awarded a $1.714 billion contract for V-22 aircraft by the Navy, thus at this point the project had acquisition plans with all four arms of the U.S. military.[17]

 

The first V-22 was rolled out with significant media attention in May 1988.[18][19] However the project suffered several political blows. Firstly in the same year, the Army left the program, citing a need to focus its budget on more immediate aviation programs.[20] The project also faced considerable dialogue in the Senate, surviving two votes that both could have resulted in cancellation.[21][22] Despite the Senate's decision, the Department of Defense instructed the Navy not to spend more money on the Osprey.[23] At the same time, the Bush administration sought the cancellation of the project.[23]

 

Flight testing and design changes

 

The first of six MV-22 prototypes first flew on 19 March 1989 in the helicopter mode,[24] and on 14 September 1989 as a fixed-wing plane.[25] The third and fourth prototypes successfully completed the Osprey's first Sea Trials on the USS Wasp in December 1990.[26] However, the fourth and fifth prototypes crashed in 1991-92.[27] Flight tests were resumed in August 1993 after changes were incorporated in the prototypes.[2] From October 1992 until April 1993, Bell and Boeing redesigned the V-22 to reduce empty weight, simplify manufacture and reduce production costs. This redesigned version became the B-model.[28]

 

Flight testing of four full-scale development V-22s began in early 1997 when the first pre-production V-22 was delivered to the Naval Air Warfare Test Center, Naval Air Station Patuxent River, Maryland. The first EMD flight took place on 5 February 1997. The first of four low rate initial production aircraft, ordered on 28 April 1997, was delivered on 27 May 1999. Osprey number 10 completed the program's second Sea Trials, this time from the USS Saipan in January 1999.[2] During external load testing in April 1999, Boeing used a V-22 to lift and transport the M777 howitzer.[29] In 2000, Boeing announced that the V-22 would be fitted with a nose-mounted GAU-19 Gatling gun,[30] but the GAU-19 gun was later canceled.[31]

 

In 2000, there were two further fatal crashes, killing a total of 19 Marines, and the production was again halted while the cause of these crashes was investigated and various parts were redesigned.[32] The V-22 completed its final operational evaluation in June 2005. The evaluation was deemed successful; events included long range deployments, high altitude, desert and shipboard operations. The problems identified in various accidents had been addressed.[33]

 

Controversy

 

The V-22's development process has been long and controversial, partly due to its large cost increases.[34] When the development budget, first planned for $2.5 billion in 1986, increased to a projected $30 billion in 1988, then-Defense Secretary Dick Cheney tried to zero out its funding. He was eventually overruled by Congress.[32] As of 2008, $27 billion have been spent on the Osprey program and another $27.2 billion will be required to complete planned production numbers by the end of the program.[2]

 

The V-22 squadron's former commander at Marine Corps Air Station New River, Lt. Colonel Odin Lieberman, was relieved of duty in 2001 after allegations that he instructed his unit that they needed to falsify maintenance records to make the plane appear more reliable.[2][35] Three officers were later implicated in the falsification scandal.[34]

 

The aircraft is incapable of autorotation, and is therefore unable to land safely in helicopter mode if both engines fail. A director of the Pentagon's testing office in 2005 said that if the Osprey loses power while flying like a helicopter below 1,600 feet (490 m), emergency landings "are not likely to be survivable". But Captain Justin (Moon) McKinney, a V-22 pilot, says that this will not be a problem, "We can turn it into a plane and glide it down, just like a C-130".[31] A complete loss of power would require the failure of both engines, as a drive shaft connects the nacelles through the wing; one engine can power both proprotors.[36] While vortex ring state (VRS) contributed to a deadly V-22 accident, the aircraft is less susceptible to the condition than conventional helicopters and recovers more quickly.[5] The Marines now train new pilots in the recognition of and recovery from VRS and have instituted operational envelope limits and instrumentation to help pilots avoid VRS conditions.[32][37]

 

It was planned in 2000 to equip all V-22s with a nose-mounted Gatling gun, to provide "the V-22 with a strong defensive firepower capability to greatly increase the aircraft's survivability in hostile actions."[30] The nose gun project was canceled however, leading to criticism by retired Marine Corps Commandant General James L. Jones, who is not satisfied with the current V-22 armament.[31] A belly-mounted turret was later installed on some of the first V-22s sent to the War in Afghanistan in 2009.[38]

 

With the first combat deployment of the MV-22 in October 2007, Time Magazine ran an article condemning the aircraft as unsafe, overpriced, and completely inadequate.[31] The Marine Corps, however, responded with the assertion that much of the article's data were dated, obsolete, inaccurate, and reflected expectations that ran too high for any new field of aircraft.[39]

 

Recent development

 

On 28 September 2005, the Pentagon formally approved full-rate production for the V-22.[40] The plan is to boost production from 11 a year to between 24 and 48 a year by 2012. Of the 458 total planned, 360 are for the Marine Corps, 48 for the Navy, and 50 for the Air Force at an average cost of $110 million per aircraft, including development costs.[2] The V-22 had an incremental flyaway cost of $70 million per aircraft in 2007,[3] but the Navy hopes to shave about $10 million off that cost after a five-year production contract starts in 2008.[41]

 

The Bell-Boeing Joint Project Office in Amarillo, Texas will design a new integrated avionics processor to resolve electronics obsolescence issues and add new network capabilities.[42]

 

Design

 

The Osprey is the world's first production tiltrotor aircraft, with one three-bladed proprotor, turboprop engine, and transmission nacelle mounted on each wingtip. It is classified as a powered lift aircraft by the Federal Aviation Administration.[43] For takeoff and landing, it typically operates as a helicopter with the nacelles vertical (rotors horizontal). Once airborne, the nacelles rotate forward 90° in as little as 12 seconds for horizontal flight, converting the V-22 to a more fuel-efficient, higher-speed turboprop airplane. STOL rolling-takeoff and landing capability is achieved by having the nacelles tilted forward up to 45°. For compact storage and transport, the V-22's wing rotates to align, front-to-back, with the fuselage. The proprotors can also fold in a sequence taking 90 seconds.[44]

 

Most Osprey missions will use fixed wing flight 75 percent or more of the time, reducing wear and tear on the aircraft and reducing operational costs.[45] This fixed wing flight is higher than typical helicopter missions allowing longer range line-of-sight communications and so improved command and control.[2] Boeing has stated the V-22 design loses 10% of its vertical lift over a Tiltwing design when operating in helicopter mode because of airflow resistance due to the wings, but that the Tiltrotor design has better short takeoff and landing performance.[46]

 

The V-22 is equipped with a glass cockpit, which incorporates four Multi-function displays (MFDs) and one shared Central Display Unit (CDU), allowing the pilots to display a variety of images including: digimaps centered or decentered on current position, FLIR imagery, primary flight instruments, navigation (TACAN, VOR, ILS, GPS, INS), and system status. The flight director panel of the Cockpit Management System (CMS) allows for fully-coupled (aka: autopilot) functions which will take the aircraft from forward flight into a 50-foot hover with no pilot interaction other than programming the system.[47] The glass cockpit of the canceled CH-46X was derived from the V-22.[48]

 

The V-22 is a fly-by-wire aircraft with triple-redundant flight control systems.[49] With the nacelles pointing straight up in conversion mode at 90° the flight computers command the aircraft to fly like a helicopter, with cyclic forces being applied to a conventional swashplate at the rotor hub. With the nacelles in airplane mode (0°) the flaperons, rudder, and elevator fly the aircraft like an airplane. This is a gradual transition and occurs over the rotation range of the nacelles. The lower the nacelles, the greater effect of the airplane-mode control surfaces.[50] The nacelles can rotate past vertical to 97.5° for rearward flight.[51][52]

 

The Osprey can be armed with one M240 7.62x51mm NATO (.308 in caliber) or M2 .50 in caliber (12.7 mm) machine gun on the loading ramp, that can be fired rearward when the ramp is lowered. A GAU-19 three-barrel .50 in gatling gun mounted below the V-22's nose has also been studied for future upgrade.[31][53] BAE Systems developed a remotely operated turreted weapons system for the V-22,[54] which was installed on half of the first V-22s deployed to Afghanistan in 2009.[38] The 7.62 mm belly gun turret is remotely operated by a gunner inside the aircraft, who acquires targets with a separate pod using color television and forward looking infrared imagery.

 

U.S. Naval Air Systems Command is working on upgrades to increase the maximum speed from 250 knots (460 km/h; 290 mph) to 270 knots (500 km/h; 310 mph), increase helicopter mode altitude limit from 10,000 feet (3,000 m) to 12,000 feet (3,700 m) or 14,000 feet (4,300 m), and increase lift performance.[55]

 

Operational history

 

US Marine Corps

 

Marine Corps crew training on the Osprey has been conducted by VMMT-204 since March 2000. On 3 June 2005, the Marine Corps helicopter squadron Marine Medium Helicopter 263 (HMM-263), stood down to begin the process of transitioning to the MV-22 Osprey.[56] On 8 December 2005, Lieutenant General Amos, commander of the II MEF, accepted the delivery of the first fleet of MV-22s, delivered to HMM-263. The unit reactivated on 3 March 2006 as the first MV-22 squadron and was redesignated VMM-263. On 31 August 2006, VMM-162 (the former HMM-162) followed suit. On 23 March 2007, HMM-266 became Marine Medium Tiltrotor Squadron 266 (VMM-266) at Marine Corps Air Station New River, North Carolina.[57]

 

The Osprey has been replacing existing CH-46 Sea Knight squadrons.[58] The MV-22 reached initial operational capability (IOC) with the U.S. Marine Corps on 13 June 2007.[1] On 10 July 2007 an MV-22 Osprey landed aboard the Royal Navy aircraft carrier, HMS Illustrious in the Atlantic Ocean. This marked the first time a V-22 had landed on any non-U.S. vessel.[59]

 

On 13 April 2007, the U.S. Marine Corps announced that it would be sending ten V-22 aircraft to Iraq, the Osprey's first combat deployment. Marine Corps Commandant, General James Conway, indicated that over 150 Marines would accompany the Osprey set for September deployment to Al-Asad Airfield.[60][61] On 17 September 2007, ten MV-22Bs of VMM-263 left for Iraq aboard the USS Wasp. The decision to use a ship rather than use the Osprey's self-deployment capability was made because of concerns over icing during the North Atlantic portion of the trip, lack of available KC-130s for mid-air refueling, and the availability of the USS Wasp.[62]

 

The Osprey has provided support in Iraq, racking up some 2,000 flight hours over three months with a mission capable availability rate of 68.1% as of late-January 2008.[63] They are primarily used in Iraq's western Anbar province for routine cargo and troop movements, and also for riskier "aero-scout" missions. General David Petraeus, the top U.S. military commander in Iraq, used one to fly around Iraq on Christmas Day 2007 to visit troops.[64] Then-presidential candidate Barack Obama also flew in Ospreys during his high profile 2008 tour of Iraq.[65]

 

The only major problem has been obtaining the necessary spare parts to maintain the aircraft.[66] The V-22 had flown 3,000 sorties totaling 5,200 hours in Iraq as of July 2008.[67] USMC leadership expect to deploy MV-22s to Afghanistan in 2009.[66][68] General George J. Trautman, III praised the increased range of the V-22 over the legacy helicopters in Iraq and said that "it turned his battle space from the size of Texas into the size of Rhode Island."[69]

 

Naval Air Systems Command has devised a temporary fix for sailors to place portable heat shields under Osprey engines to prevent damage to the decks of some of the Navy's smaller amphibious ships, but they determined that a long term solution to the problem would require these decks be redesigned with heat resistant deck coatings, passive thermal barriers and changes in ship structure in order to operate V-22s and F-35Bs.[70]

 

A Government Accountability Office study reported that by January 2009 the Marines had 12 MV-22s operating in Iraq and they managed to successfully complete all assigned missions. The same report found that the V-22 deployments had mission capable rates averaging 57% to 68% and an overall full mission capable rate of only 6%. It also stated that the aircraft had shown weakness in situational awareness, maintenance, shipboard operations and the ability to transport troops and external cargo.[71] That study also concluded that the "deployments confirmed that the V-22’s enhanced speed and range enable personnel and internal cargo to be transported faster and farther than is possible with the legacy helicopters it is replacing".[71]

 

The MV-22 saw its first offensive combat mission, Operation Cobra's Anger on 4 December 2009. Ospreys assisted in inserting 1,000 Marines and 150 Afghan troops into the Now Zad Valley of Helmand Province in southern Afghanistan to disrupt communication and supply lines of the Taliban.[38] In January 2010 the MV-22 Osprey is being sent to Haiti as part of Operation Unified Response relief efforts after the earthquake there. This will be the first use the Marine V-22 in a humanitarian mission.[72]

 

US Air Force

 

The Air Force's first operational CV-22 Osprey was delivered to the 58th Special Operations Wing (58th SOW) at Kirtland Air Force Base, New Mexico on 20 March 2006. This and subsequent aircraft will become part of the 58th SOW's fleet of aircraft used for training pilots and crew members for special operations use.[73] On 16 November 2006, the Air Force officially accepted the CV-22 in a ceremony conducted at Hurlburt Field, Florida.[74]

 

The US Air Force's first operational deployment of the Osprey sent four CV-22s to Mali in November 2008 in support of Exercise Flintlock. The CV-22s flew nonstop from Hurlburt Field, Florida with in-flight refueling.[5] AFSOC declared that the 8th Special Operations Squadron reached Initial Operational Capability on 16 March 2009, with six of its planned nine CV-22s operational.[75]

 

In June 2009, CV-22s of the 8th Special Operations Squadron delivered 43,000 pounds (20,000 kg) of humanitarian supplies to remote villages in Honduras that were not accessible by conventional vehicles.[76] In November 2009, the 8th SO Squadron and its six CV-22s returned from a three-month deployment in Iraq.[77]

 

The first possible combat loss of an Osprey occurred on 9 April, 2010, as a CV-22 went down near Qalat, Zabul Province, Afghanistan, killing four.[78][79]

 

Potential operators

 

In 1999 the V-22 was studied for use in the United Kingdom's Royal Navy,[80] it has been raised several times as a candidate for the role of Maritime Airborne Surveillance and Control (MASC).[81]

 

Israel had shown interest in the purchase of MV-22s, but no order was placed.[82][83] Flightglobal reported in late 2009 that Israel has decided to wait for the CH-53K instead.[84]

 

The V-22 Osprey is a candidate for the Norwegian All Weather Search and Rescue Helicopter (NAWSARH) that is planned to replace the Westland Sea King Mk.43B of the Royal Norwegian Air Force in 2015.[85] The other candidates for the NAWSARH contract of 10-12 helicopters are AgustaWestland AW101 Merlin, Eurocopter EC225, NHIndustries NH90 and Sikorsky S-92.[86]

 

Bell Boeing has made an unsolicited offer of the V-22 for US Army medical evacuation needs.[87] However the Joint Personnel Recovery Agency issued a report that said that a common helicopter design would be needed for both combat recovery and medical evacuation and that the V-22 would not be suitable for recovery missions because of the difficulty of hoist operations and lack of self-defense capabilities.[88]

 

The US Navy remains a potential user of the V-22, but its role and mission with the Navy remains unclear. The latest proposal is to replace the C-2 Greyhound with the V-22 in the fleet logistics role. The V-22 would have the advantage of being able to land on and support non-carriers with rapid delivery of supplies and people between the ships of a taskforce or to ships on patrol beyond helicopter range.[89] Loren B. Thompson of the Lexington Institute has suggested V-22s for use in combat search and rescue and Marine One VIP transport, which also need replacement aircraft.[90]

 

Variants

  

V-22A 

•• Pre-production full-scale development aircraft used for flight testing. These are unofficially considered A-variants after 1993 redesign.[91]

  

HV-22 

•• The U.S. Navy considered an HV-22 to provide combat search and rescue, delivery and retrieval of special warfare teams along with fleet logistic support transport. However, it chose the MH-60S for this role in 1992.[92]

  

SV-22 

•• The proposed anti-submarine warfare Navy variant. The Navy studied the SV-22 in the 1980s to replace S-3 and SH-2 aircraft.[93]

  

MV-22B 

•• Basic U.S. Marine Corps transport; original requirement for 552 (now 360). The Marine Corps is the lead service in the development of the V-22 Osprey. The Marine Corps variant, the MV-22B, is an assault transport for troops, equipment and supplies, capable of operating from ships or from expeditionary airfields ashore. It is replacing the Marine Corps' CH-46E[57] and CH-53D.[94]

  

CV-22B 

•• Air Force variant for the U.S. Special Operations Command (USSOCOM). It will conduct long-range, special operations missions, and is equipped with extra fuel tanks and terrain-following radar.[95][96]

 

Operators

 

 United States

 

United States Air Force

 

•• 8th Special Operations Squadron (8 SOS) at Hurlburt Field, Florida

•• 71st Special Operations Squadron (71 SOS) at Kirtland Air Force Base, New Mexico

•• 20th Special Operations Squadron (20 SOS) at Cannon Air Force Base, New Mexico

 

United States Marine Corps

 

•• VMM-161

•• VMM-162

•• VMM-261

•• VMM-263

•• VMM-264

•• VMM-266

•• VMM-365

•• VMMT-204 - Training squadron

•• VMX-22 - Marine Tiltrotor Operational Test and Evaluation Squadron

 

Notable accidents

 

Main article: Accidents and incidents involving the V-22 Osprey

 

From 1991 to 2000 there were four significant crashes, and a total of 30 fatalities, during testing.[32] Since becoming operational in 2007, the V-22 has had one possible combat loss due to an unknown cause, no losses due to accidents, and seven other notable, but minor, incidents.

 

• On 11 June 1991, a mis-wired flight control system led to two minor injuries when the left nacelle struck the ground while the aircraft was hovering 15 feet (4.6 m) in the air, causing it to bounce and catch fire.[97]

 

• On 20 July 1992, a leaking gearbox led to a fire in the right nacelle, causing the aircraft to drop into the Potomac River in front of an audience of Congressmen and other government officials at Quantico, killing all seven on board and grounding the aircraft for 11 months.[98]

 

• On 8 April 2000, a V-22 loaded with Marines to simulate a rescue, attempted to land at Marana Northwest Regional Airport in Arizona, stalled when its right rotor entered vortex ring state, rolled over, crashed, and exploded, killing all 19 on board.[37]

 

• On 11 December 2000, after a catastrophic hydraulic leak and subsequent software instrument failure, a V-22 fell 1,600 feet (490 m) into a forest in Jacksonville, North Carolina, killing all four aboard. This caused the Marine Corps to ground their fleet of eight V-22s, the second grounding that year.[99][100]

 

Specifications (MV-22B)

 

Data from Boeing Integrated Defense Systems,[101] Naval Air Systems Command,[102] US Air Force CV-22 fact sheet,[95] Norton,[103] and Bell[104]

 

General characteristics

 

Crew: Four (pilot, copilot and two flight engineers)

Capacity: 24 troops (seated), 32 troops (floor loaded) or up to 15,000 lb (6,800 kg) of cargo (dual hook)

Length: 57 ft 4 in (17.5 m)

Rotor diameter: 38 ft 0 in (11.6 m)

Wingspan: 45 ft 10 in (14 m)

Width with rotors: 84 ft 7 in (25.8 m)

Height: 22 ft 1 in/6.73 m; overall with nacelles vertical (17 ft 11 in/5.5 m; at top of tailfins)

Disc area: 2,268 ft² (212 m²)

Wing area: 301.4 ft² (28 m²)

Empty weight: 33,140 lb (15,032 kg)

Loaded weight: 47,500 lb (21,500 kg)

Max takeoff weight: 60,500 lb (27,400 kg)

Powerplant:Rolls-Royce Allison T406/AE 1107C-Liberty turboshafts, 6,150 hp (4,590 kW) each

 

Performance

 

Maximum speed: 250 knots (460 km/h, 290 mph) at sea level / 305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)[105]

Cruise speed: 241 knots (277 mph, 446 km/h) at sea level

Range: 879 nmi (1,011 mi, 1,627 km)

Combat radius: 370 nmi (426 mi, 685 km)

Ferry range: 1,940 nmi (with auxiliary internal fuel tanks)

Service ceiling: 26,000 ft (7,925 m)

Rate of climb: 2,320 ft/min (11.8 m/s)

Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)

Power/mass: 0.259 hp/lb (427 W/kg)

 

Armament

 

• 1× M240 machine gun on ramp, optional

 

Notable appearances in media

 

Main article: Aircraft in fiction#V-22 Osprey

 

See also

 

Elizabeth A. Okoreeh-Baah, USMC - first female to pilot a V-22 Osprey

 

Related development

 

Bell XV-15[106]

Bell/Agusta BA609

Bell Boeing Quad TiltRotor

 

Comparable aircraft

 

Canadair CL-84

LTV XC-142

 

Related lists

 

List of military aircraft of the United States

List of VTOL aircraft

 

References

 

Bibliography

 

• Markman, Steve and Bill Holder. "Bell/Boeing V-22 Osprey Tilt-Engine VTOL Transport (U.S.A.)". Straight Up: A History of Vertical Flight. Schiffer Publishing, 2000. ISBN 0-7643-1204-9.

• Norton, Bill. Bell Boeing V-22 Osprey, Tiltrotor Tactical Transport. Midland Publishing, 2004. ISBN 1-85780-165-2.

 

External links

 

Wikimedia Commons has media related to: V-22 Osprey

 

Official Boeing V-22 site

Official Bell V-22 site

V-22 Osprey web, and www.history.navy.mil/planes/v-22.html

CV-22 fact sheet on USAF site

www.globalsecurity.org/military/systems/aircraft/v-22.htm

www.airforce-technology.com/projects/osprey/

Onward and Upward

"Flight of the Osprey", US Navy video of V-22 operations

Midtown Manhattan, New York City, New York, United States

  

The CBS Building was built in 1961-64 as the headquarters for one of America's three historic radio and television networks. The last completed work designed by architect Eero Saarinen, it is one of New York's premier post-World-War-II-era skyscrapers and one of the country's great works of modern architecture. Saarinen's goal was to build what he called "the simplest skyscraper in New York." At the height of the popularity of the steel-cage office building, Saarinen designed the CBS Building as New York's first postwar reinforced concrete skyscraper. The 38-story tower is sheathed in dark gray granite, with gray-tinted vision glass - earning the building the sobriquet "Black Rock." When seen directly, the tower's bays appear open, with relatively narrow granite piers alternating with relatively narrow window bays of single sheets of plate glass, but when viewed from afar and necessarily at an angle, the V-shape of the piers effectively eclipses the view of the glass, creating the effect of a gray granite slab.

 

The austerity of the tower derives in part from its dark gray color and the almost complete absence of interruptions in the facades. Saarinen placed the main entrances on West 52nd and West 53rd Streets, rather than on Sixth Avenue, creating the effect of an absolutely pure granite slab on Sixth Avenue. Ground floor commercial uses are set behind the gray glass, making them barely visible from outside. Eero Saarinen died suddenly in 1961, leaving to his office the task of supervising the construction of the CBS

 

Building. Kevin Roche and John Dinkeioo, among others, oversaw the completion of the project from 1961 to 1964. The building remains the corporate headquarters of CBS.

 

DESCRIPTION AND ANALYSIS

 

William S. Paley and the Columbia Broadcasting System2

 

CBS traces its origins to the United Independent Broadcasters, a fledgling radio station network that was an early rival to NBC (the National Broadcasting Company), the network created by RCA's David Sarnoff. UIB incorporated in 1927, and, following its purchase later that year by the Columbia Phonograph Company, changed its name to the Columbia Phonograph Broadcasting System, making its radio debut on September 18. When Columbia, unenthusiastic about future prospects, sold back the broadcasting rights to UIB's owners a few months later, the sale included permission to use the "Columbia" name — hence the "Columbia Broadcasting System.7' In 1928, William S. Paley, connected by marriage to one of the company's owners, used half a million dollars from his portion of the proceeds from the sale of his family's Congress Cigar business to buy a 51 percent interest in the network. He took the title of president, and proceeded over the next half century to build CBS into one of the nation's major media conglomerates.

 

CBS's chief rival for its first several decades of existence remained the much larger NBC.3 RCA's Sarnoff initially saw NBC as a free service intended to encourage the purchase of RCA-manufactured radios. Paley, with only radio programming to sell, focused on the promotion of radio advertising and the creation of saleable programs. By the end of 1928, CBS had 47 affiliates. Highlights of CBS's growth over the following years, from tiny upstart to major network, include the creation of CBS's news department; experiments in television broadcasting as early as 1931 (the first regularly scheduled in the nation, even though almost no one could watch); putting the young Bing Crosby on the radio in 1932, opposite NBC's Amos 'n Andy; broadcasting the School of the Air to some six million children starting in 1934; initiating the Lux Radio Theater in 1935, with Helen Hayes in its first offering; in 1936 bringing the popular Major Bowes' amateur hour to the radio, as well as comedians Bums and Allen, Eddie Cantor, and Ed Wynn, while at the same time inaugurating the Columbia Workshop for serious drama, including the works of W.H. Auden, Stephen Vincent Benet, Maxwell Anderson and Edna St. Vincent Millay; and the infamous 1938 broadcast of Orson Welles' production, "War of the Worlds." During World War II, CBS emerged as a major news broadcaster, led by foreign correspondents William L. Shirer and

 

Edward R. Murrow, with Charles Collingwood reporting on D-day from the Normandy beaches.

 

After the war ended, William S. Paley became chairman of the board, while his protege Frank Stanton became president. CBS moved into television, broadcasting Arthur Godfrey, Ed Sullivan, I Love Lucy, and Walter Cronkite's series You Are There. In 1951, the CBS "eye" was developed as the network's television trademark. By the late 1950s, three decades after its founding, CBS had become firmly ensconced as a national institution. In 1966, the year following CBS's move into the new tower at 51 West 52nd Street, the corporation had over 17,000 employees, earned $64.1 million, and had net sales of over $800 million.

 

As early as 1929, while still in UIB's old offices in the Paramount Building, CBS had acquired Steinway Hall on West 57th Street for concert broadcasts.

 

Later that year, Paley arranged the move to offices at 485 Madison Avenue. As early as 1935, CBS planned a new headquarters to designs by prominent modem architect William Lescaze, but it was never built. ^By the late 1950s, however, a diversifying CBS had grown enormously, acquiring interests in record manufacturing, television sets, musical instruments, publishing and a talent agency. The network invested in theatrical productions, and for a time owned the New York Yankees baseball team. CBS operations occupied space in a number of buildings scattered around Manhattan. Paley decided that the company's rented space on Madison Avenue was neither adequate to the network's needs nor helpful to its image, and determined to build a new headquarters that could compete in architectural prestige with NBC's headquarters at Rockefeller Center. In his words: "I think we were . . . determined that if we went ahead on our own building for CBS, it would have to be of the highest aesthetic quality obtainable."4

 

Paley thought Park Avenue had "too cold a feeling," and considered Madison Avenue "too narrow to display good architecture." Nothing was available on Fifth Avenue. He found a site on the east side of Sixth Avenue between West 52nd and West 53rd Streets, just two blocks west of the network's old Madison Avenue headquarters, and a few blocks north of NBC, in an area Paley characterized as "emerging as the newest important business area in midtown."5 CBS bought the site in 1960, and hired Eero Saarinen, one of the most prestigious and best-known modem architects of the

 

day, to design the building. To PaJey, "not only was he one of this country's outstanding architects, he was also a creative artist in the deepest sense, and he won us over by the force of his personality, imagination and practicality."6

 

Eero Saarinen Associates

 

The American saga of the remarkable Saarinen family is framed by two skyscrapers, the Chicago Tribune Tower and the CBS Building. Eliel Saarinen's second-prize entry in the Chicago Tribune Tower competition of 1922 had enormous influence on subsequent skyscraper design; its critical American success helped convince the Finnish architect to bring his family, including his son Eero, to the United States. Eero Saarinen's CBS Building, the only skyscraper by either man to have been built, was completed only after its designer's untimely death, and has become recognized as one of the country's major monuments of modern skyscraper design.

 

A master architect of the mid-twentieth century, Eero Saarinen (1910-1961) was groomed from childhood to be a successful designer by his parents, textile artist Loja Gesellius Saarinen, and highly regarded international architect (Gottlieb) Eliel Saarinen (1873-1950). Eliel's early career is best remembered for his Helsinki Railroad Station (1904-c.1913, with Herman Gesellius) which successfully demonstrates his sympathies with the Arts and Crafts movement. The Saarinen family immigrated to the United States in 1923, but visited Finland annually. Eliel contributed significantly to the creation of the Cranbrook School and Academy of Art, a complex of children's schools and an advanced-level art academy, located at Bloomfield Hills, north of Detroit. Cranbrook was devoted to every field of design — textiles, metal work, architecture, and city planning. Eliel designed several buildings there, including the Cranbrook School for Boys (1924-30) and the Kingswood School for Girls (1929-30).

 

The latter project exemplifies the Arts and Crafts ideal of collaboration between the fine and applied arts: while Eliel oversaw all aspects of design, Loja designed and wove fabrics (in association with the Cranbrook Looms), Eero designed furniture, and his sister, Eva-Lisa, assisted with selecting wall and ceiling treatments.

 

During the early 1930s, Eero studied sculpture at the Parisian Academie de la Grand Chaumiere, completed a Bachelor of Fine Arts in the Beaux-A rts-oriented architecture program at Yale University, and toured Europe and Egypt on a travel fellowship, during which time he was influenced by the architecture of Erich Mendelsohn and Alvar Aalto — before joining his father's firm in 1936. Together, the Saarinens produced the much-praised Crow Island School (1939-40, with Perkins, Wheeler & Will) in Winnetka, Illinois. Eero entered many design competitions, and won several prizes. He collaborated with designer Charles O. Eames on the scheme for a molded plywood chair which won the Organic Design in Home Furnishings competition (1940-41), sponsored by the Museum of Modern Art. Recognized from that point on as an important furniture designer, Saarinen produced many designs for the Knoll furniture company, best represented by his Womb chair (1946-48) and Nos. 71 and 72 chair series (c.1956).

 

Eero Saarinen has been credited with developing the innovative "systems approach" to design; he carefully analyzed each problem, and usually relied on modern technology to find a unique form and structure to express a concept architecturally. As a result, each of his designs has a certain wholeness about it; he claimed to be concerned with the "esthetics of the whole organism" and sought an "expressive architecture, an antiassembly-Iine architecture," stating "each building should be as distinctive as each person should."8 The commission which firmly established his architectural career was the General Motors Technical Center (1945-56, with Smith, Hinchman & Grylls) in Warren, Michigan. Though the initial designs for the Center were begun in association with his father, the final scheme was largely Eero's.

 

The complex is ruled by its strictly modular design (structure, partitions, and mechanical systems are fully integrated) and features such technological innovations as neoprene window gaskets and walls of thin insulated panels sheathed in porcelainized sheet metal; the architect also added brightly colored brick surfaces and his signature element, a reflecting pool. During the GM project, the elder Saarinen died and Eero formed a successor firm', Eero Saarinen & Associates. An intensely devoted and methodical worker — he worked 365 days a year, according to his chief of design, Kevin Roche — Eero produced a number of buildings which have become American landmarks.

 

These include his Jefferson National Expansion Memorial (designed 1948, completed 1964), the famous parabolic arch in St. Louis, Missouri; the Kresge Auditorium and Chapel (1953-56, with Anderson & Beckwith), geometrically-derived enclosures highlighting different materials, at the Massachusetts Institute of Technology in Cambridge; the David S. Ingalls Hockey Rink (1956-59), the undulating concrete roof of which expresses the exhilaration of a hockey game, at Yale University in New Haven; and two soaring reinforced concrete masterpieces associated with flight: the Trans World Airlines Flight Center9 (1956-62) at New York (now J.F.K.) International Airport — probably his most renowned design — and Dulles Airport (1958-62, with Ammann & Whitney) in Chantilly, Virginia. The last three commissions were completed after Saarinen's death in 1961, as was his other prominent New York project, the somber, granite-clad Columbia Broadcasting System (CBS) Headquarters (1961-64) on Sixth Avenue between West 52nd and 53rd Streets.

 

Saarinen's buildings received extensive publicity in the press, and he was given several prestigious awards. Though many architects and architectural writers sympathetic to the International Style criticized Saarinen's work as lacking consistency, his oeuvre has withstood the test of time: by 1993, six of his designs had received the American Institute of Architects' 25-Year Award for "exemplifying] design of enduring significance." These include the Crow Island School, GM Technical Center, and Dulles Airport.10 Saarinen's successor firm, Kevin Roche John Dinkeloo Associates, founded by his colleagues, has been a significant force in American architecture during the second half of this century.

 

The CBS Building

 

Both Saarinen and Paley wanted a skyscraper that would differ from the established International Style of the 1950s represented by such New York towers as Skidmore, Owings & Merrill's Lever House and Mies van der Rohe's Seagram Building." "After all," said Saarinen's widow Aline, "that's why they came to Eero and not to Skidmore."'

 

Saarinen experimented with models showing various possible shapes for the tower, ranging from the wedding-cake profile encouraged by then existing zoning laws to various square and rectangular towers rising from a plaza.13 Saarinen eventually settled on a rectangular tower, as he wrote to Paley in March of 1961:

 

I think I now have a really good scheme for C.B.S. The design is the simplest conceivable rectangular free-standing sheer tower. The vertically of the tower is emphasized by the relief made by the triangular piers between the windows. These piers start at the pavement and soar up 424 feet. Its beauty will be, I believe, that it will be the simplest skyscraper statement in New York.14 Paley later went out to Saarinen's office in Detroit to see a model, which he at first didn't like. On a second visit, however, Paley changed his mind: "I saw what I had first thought of as austerity really came through as strong, exquisite, ageless beauty. In July, 1961 I decided to go ahead with Saarinen."15

 

John Dinkeloo later said that Saarinen had been "especially excited about this design."16 In Saarinen's words: "I wanted a building that would be a soaring thing. I think Louis Sullivan was right to want the skyscraper to be a soaring thing. I wanted a building that would stand firmly on the ground and would grow straight up. Your eyes should be led up to comprehend a building as a whole thing."17

 

After Saarinen's sudden death, Paley met with chief designer Kevin Roche, and decided to continue with the firm. Paley was an actively involved client. In the words of a contemporary critic, Eric Larrabee: "Where CBS left off and Saarinen began is now difficult to determine, especially since he was the kind of architect . . . who . . . cared less who got credit for an idea than whether his own ideas prevailed."18 Of the building's completion, Paley wrote; "Participating in the creation of Black Rock was one of the great sources of satisfaction of my life."19

 

The premise of Saarinen's design, a freestanding tower in a plaza, was bound up in changes then being proposed to New York City's zoning laws. The 1916 zoning ordinance, in effect until 1961, had encouraged progressively set-back towers. The new ordinance encouraged tall towers set back in plazas. Saarinen met with the architects and planners working out the new zoning proposal, including Gordon Bunshaft of Skidmore, Owings & Merrill, and James Felt of the New York City Planning Commission, to explain the economics of his tower. CBS wasn't just one of the first towers to be built under the new zoning; Saarinen's designs and calculations for the tower actually helped shape the new regulations.20 In the words of New York Times architectural critic Ada Louise Huxtable, the CBS Building "set the shape and standard for New York building today."21

 

Saarinen designed the CBS Building as New York's first postwar skyscraper built of reinforced concrete.22 Instead of an internal cage, from which to hang a seemingly weightless glass curtain wall, he designed exterior walls of triangular, weight-bearing concrete piers, which together with the interior service and elevator core support the building. By using the piers, he emphasized its verticality. Instead of a flat facade, Saarinen made the concrete piers in a three-dimensional projecting triangular V-shape, with the glass recessed behind them. And instead of creating a transparent glass, shiny steel, or aluminum facade, he sheathed the concrete piers in dark gray granite, and filled in the intervening window bays with gray-tinted vision glass. Instead of the illusion of a glass box, he created the illusion of a slab of dark granite — earning the building the sobriquet "Black Rock."

 

The five-foot widths of piers and window bays tied into the modular design of the entire structure. Each entrance on West 52nd and 53rd Street fit into one bay, and was planned with revolving doors, which required a minimum of five feet. Five-foot modules also met the needs of then standard office furniture arrangements.23 The precise dimensions of pier and window were carefully adjusted. Roche did a series of mock-ups of the proposed building in New Rochelle, New York, and Paley wrote he "must have gone out to New Rochelle at least thirty times to study the various mock-ups . . . when Roche, Stanton and I went out to look at [the mock-up], we realized that the difference between the window area and the column area was not right. Your eye could tell you that. We started then to change it. We got down to talking about a quarter of an inch or a sixteenth of an inch. We must have put up five or six different-sized mock-ups before we finally got it right."24

 

The use of dark gray granite was proposed by Saarinen, but the final selection was made by his successors. His widow suggested that Saarinen was thinking of executives in dark gray suits.25 Dinkeioo believed that dark stone projected strength better than glass.26 Saarinen himself wrote: "A dark building seemed more quiet and dignified and appropriate to this site."27 Paley recalls deciding in favor of true granite after rejecting a synthetic version, because "in the long run it would be worth it. The building would be built to last a hundred years. Granite would retain its beauty as long as the building stood." After examining granite from Africa, Japan, Norway, Sweden, Germany, France, Spain, Portugal, and the United States, they settled on Canadian Black granite from the Robitaille family quarry in Alma, Quebec.28

 

Saarinen's triangular piers and modular design created a three-dimensional study in architectural illusion. From directly across Sixth Avenue, for example, the tower's bays appear open, with five- foot-wide granite piers alternating with five-foot-wide window bays of single sheets of plate glass. When viewed from afar and necessarily at an angle, the V-shape of the piers effectively eclipses the view of the glass, creating the effect of a gray granite slab. The bays of any of the building's four sides thus appear to open directly in front of a viewer but appear to close up like a vertical Venetian blind to the right or left. As the viewer walks along the sidewalk, the bays appear to open and close in succession, rather like an accordion (as contemporary critics remarked). This optical effect was described by one contemporary writer as "trompe l'oeil,"29 and by another as "op-arch."30 Saarinen, describing the effect in motion, wrote: "We had learned the way a changing relief gives life to a facade."31

 

The austerity of the CBS Building derives in part from the almost complete absence of interruptions in the facades. There are no setbacks. The main entrances on the side streets are through doors set discreetly within bays and integrated into the facade's design. Saarinen created the effect of a pure glass and granite slab on Sixth Avenue. The commercial spaces at the ground floor, set behind gray glass, are rendered practically invisible from outside, with very discreet signage.32

 

Though he put the CBS Building in a sunken plaza, Saarinen tried in some measure to respect the street wall of Sixth Avenue, keeping the plaza small and siting the tower a little off-center. In the architect's words:

 

We tried to place the building on the site so that we could have a plaza and still not destroy the street line. A tower should not be tied in with lower street buildings. It should stand alone with air and light around it. A plaza is a very necessary thing in a city. It lets people sit in the sun and look at the sky. A plaza allows a building to be seen. Our buildings should be seen, because they are monuments of our time. But ... we have to remember the street line and we have to remember the space between is as important as the towers. These arrangements should be orderly and beautiful.33

 

Critical Reaction

 

CBS staff started moving into the new building at the end of 1964.34 That same year, the Architectural League of New York cited the building as one of eight recent CBS projects across the country built to high architectural standards, and

 

awarded a medal to CBS president Frank Stanton for "significant contributions and effective encouragement of the role of the arts in business and industry."35 Reporting on the award, the New York Times wrote: "Seeking to promote its corporate image, Columbia insisted on high architectural standards and employed some of the country's leading architects to achieve them."36

 

The following year, CBS won a Bronze Plaque from New York's Municipal Art Society for "an outstanding example of architecture befitting the city of New York." Stanton, accepting the award, explained: "The things we build should be beautiful for no better reason than man has created them as part of his work and places them beside the creation of nature as part of his life. The only goal for men who build should be to make nothing that is less than beautiful. In planning for the building, the one controlling idea from the outset was that we wanted a building actively, insistently, inexorably on the cutting edge in the evolution of the skyscraper."37

 

Critical reaction has varied somewhat, but the CBS Building has been generally accepted as one of New York's premier post-World-War-II-era skyscrapers and one of the country's great works of modern architecture. Even before its completion, the Times wrote that, "if buildings were rated like television programs, the Columbia Broadcasting System would have a new hit."38

 

The CBS Building represented a departure from the International Style, and some critics didn't understand that. Some thought that the building's piers did not explicitly express their function — an important concept in International Style design — because they didn't narrow towards the top (where they supported less weight than at the bottom).39 Yet others praised the piers as "directly expressed from plaza to sky, rather than concealed behind curtain walls as in neighboring office buildings."40 Similarly, Saarinen's biographer, Allan Temko, writing in 1962, faulted the tower for not growing "visually more open and light as it rises," and commented that though it had a plaza, the plaza was "scarcely more than a protective border for the freestanding tower, and is in no sense a real civic space."41 Temko opined that if Saarinen had had the opportunity to design additional skyscrapers, they would have overcome such weaknesses, making his untimely death "one of the cultural disasters of modern times."

 

Critic Bethami Probst, unhappy that the tower didn't "soar," compared it unfavorably with the Seagram Building ("If Seagram is the Rolls Royce of recent skyscrapers, CBS must be content with

 

being in the Bentley class (which is by no means bad)"). Nevertheless, in the critic's final judgment, "CBS is a building to be reckoned with, a powerful, brooding presence."43

 

David Jacobs described the impact of the opening-closing facades on a "fascinated" public: "They stroll back and forth, walk slowly then quickly, back and forth again, playing peek-a-boo." Though he found the CBS Building "impersonal and forbidding, and from close by, downright overwhelming," he noted that European cathedrals were overwhelming too, and he judged the building "a marvelous contribution to the city of New York, a splendid monument to the business of communications and the art of architecture."43

 

Ada Louise Huxtable, writing in 1966, thought the public was less favorable to the building than the critics: "The dark dignity that appeals to architectural sophisticates puts off the public, which tends to reject it as funereal," ascribing this fault to the corruption of "the public eye" which "takes bright and shiny as synonymous with new and good." Huxtable herself judged CBS "a building, in the true, classic sense: a complete design in which technology, function and esthetics are conceived and executed integrally for its purpose." She faulted the building's interior for being out of character with the exterior (it was not designed by Saarinen or his successor firm), but ultimately found the CBS Building a "first-rate work of architecture" and "an extraordinarily impressive structure."44

 

Description

 

The CBS Building is a freestanding, 38-story reinforced-concrete tower, sheathed in dark gray granite and gray-tinted vision glass, rising straight up 490 feet without setbacks. The tower, with a 135-foot by 160-foot footprint, is placed within a sunken plaza that occupies the entire western end of the block bounded by Fifth and Sixth Avenues and West 52nd and 53rd Streets on a site that is 200 feet-10 inches by 216 feet-10 inches. The tower occupies approximately 60 percent of the plaza's area and is set slightly towards the east. The plaza is set five steps (approximately three and a half feet) below the sidewalk level at Sixth Avenue, six steps below on West 52nd Street, seven steps below on West 53rd Street, and slopes downward to the east.

 

The building is rectangular in plan, with twelve bays on the eastern and western facades and fifteen bays on the wider northern and southern facades. Each facade is composed of five-foot-wide piers faced in "Canadian Black" granite flanking large, five-foot-wide panes of glass framed in bronze-

 

finished aluminum. The windows are 19 feet-10 inches high on the ground floor above bronze-finished aluminum sills, and nine feet high on the upper floors. At the first level above the ground floor, instead of glass the bays contain grilles.

 

The profile of each pier is a projecting triangular or V-shape; at each of the building's four corners the "V"s meet to form double-width piers, creating the effect of chamfered corners. Ground floor commercial uses behind gray glass are rendered practically invisible from outside.

 

There is no entrance to the CBS Building on Sixth Avenue. The building has fourteen ground floor entrances, seven on both West 52nd and West 53rd Streets. The entrances, containing three door types, are fitted unobtrusively into the narrow bays.

 

The entrances in the seven central bays on the West 52nd Street side are arranged as follows from west to east: 1) A single-door entry, flanked by sidelights, providing entrance to the commercial space; above it is a simple, modestly projecting light box. 2) A double-door entry with a simple, modestly projecting light box above. 3, 4, 5) Each has a revolving door with a simple, modestly projecting light box above with the raised letters "CBS." 6) A double-door entry with a simple, modestly projecting light box above. 7) A double-door entry with a simple, modestly projecting light box above, serving as entrance to a restaurant; there is a second simple, modestly projecting light box above, at the top of the bay. Discreet lettering on several windows identifies the restaurant. The single doors, double doors, revolving doors and their housings, and projecting light boxes are all of the same bronze-finished aluminum.

 

There are seven entrances and one window bay in the central bays on the West 53rd Street side, arranged as follows from west to east: 1) A double-door entry to the commercial space, with a simple, modestly projecting light box. 2) A double-door entry with a simple, modestly projecting light box above. 3, 4, 5) Revolving-door entrances with simple, modestly projecting light boxes above with the raised letters "CBS." 6) A double-door entry with a simple, modestly projecting light box above. 7) A window of the restaurant, with a simple, modestly projecting light box above it and

 

an additional simple, modestly projecting light box at the top of the bay. 8) A double-door entrance to the restaurant, with an angled projecting marquee with backlit letters indicating the restaurant's name, "China Grill."

 

The material of the doors and light boxes is the same as that used on West 52nd Street.

 

At the east elevation, the ground floor bays are as follows from south to north: 1, 2, 3) Glass windows. 4, 5, 6) Bronze-finished aluminum with a double door. 7) Bronze-finished aluminum with a grille. 8) Bronze-finished aluminum. 9) A glass double door, with bronze-finished aluminum above. 10,11,12) Glass windows for the restaurant. There are simple, modestly projecting light boxes in the 2nd, 5th, 8th and 11th bays.

 

The plaza is paved in a gray granite slightly lighter than that on the building's piers. The plaza is sunken below street level, forming a gray granite retaining wall with parapets and vertical slits on the inside faces. Wide steps lead down to the plaza from each street side; a narrower staircase with eight steps leads down to the plaza from the east.

 

Each set of steps has two freestanding bronze-finished aluminum railings. A ramp (not original) with a dark bronze-finished aluminum handrail has been added to the steps from West 52nd Street. The ends of the parapets above the retaining walls have polished bronze letters and numerals (replacements of the original) flanking the steps: "CBS" on Sixth Avenue, "51" for the address on West 52nd Street, and "52" for the address on West 53rd Street.

 

Planters with trees have been placed in the plaza, planters with bushes have been placed on the parapets of the retaining wall. At the eastern end of the plaza, the retaining wall has been enlarged, and includes a wheelchair-access ramp (a later addition), and a staircase leading down to a "messenger entrance." A portion of the tax lot has been excluded from the Landmark Site and has been re-landscaped as part of the plaza for the adjacent building to the east.

 

- From the 1997 NYCLPC Landmark Designation Report

104 years of history:

 

1911

Following the decision agreed at Copenhagen in 1911, International Women's Day (IWD) was honoured the first time in Austria, Denmark, Germany and Switzerland on 19 March. More than one million women and men attended IWD rallies campaigning for women's rights to work, vote, be trained, to hold public office and end discrimination. However less than a week later on 25 March, the tragic 'Triangle Fire' in New York City took the lives of more than 140 working women, most of them Italian and Jewish immigrants. This disastrous event drew significant attention to working conditions and labour legislation in the United States that became a focus of subsequent International Women's Day events. 1911 also saw women's 'Bread and Roses' campaign.

1913-1914

On the eve of World War I campaigning for peace, Russian women observed their first International Women's Day on the last Sunday in February 1913. In 1913 following discussions, International Women's Day was transferred to 8 March and this day has remained the global date for International Wommen's Day ever since. In 1914 further women across Europe held rallies to campaign against the war and to express women's solidarity.

1917

On the last Sunday of February, Russian women began a strike for "bread and peace" in response to the death over 2 million Russian soldiers in war. Opposed by political leaders the women continued to strike until four days later the Czar was forced to abdicate and the provisional Government granted women the right to vote. The date the women's strike commenced was Sunday 23 February on the Julian calendar then in use in Russia. This day on the Gregorian calendar in use elsewhere was 8 March.

1918 - 1999

Since its birth in the socialist movement, International Women's Day has grown to become a global day of recognition and celebration across developed and developing countries alike. For decades, IWD has grown from strength to strength annually. For many years the United Nations has held an annual IWD conference to coordinate international efforts for women's rights and participation in social, political and economic processes. 1975 was designated as 'International Women's Year' by the United Nations. Women's organisations and governments around the world have also observed IWD annually on 8 March by holding large-scale events that honour women's advancement and while diligently reminding of the continued vigilance and action required to ensure that women's equality is gained and maintained in all aspects of life.

2000 and beyond

IWD is now an official holiday in Afghanistan, Armenia, Azerbaijan, Belarus, Burkina Faso, Cambodia, China (for women only), Cuba, Georgia, Guinea-Bissau, Eritrea, Kazakhstan, Kyrgyzstan, Laos, Madagascar (for women only), Moldova, Mongolia, Montenegro, Nepal (for women only), Russia, Tajikistan, Turkmenistan, Uganda, Ukraine, Uzbekistan, Vietnam and Zambia. The tradition sees men honouring their mothers, wives, girlfriends, colleagues, etc with flowers and small gifts. In some countries IWD has the equivalent status of Mother's Day where children give small presents to their mothers and grandmothers.

The new millennium has witnessed a significant change and attitudinal shift in both women's and society's thoughts about women's equality and emancipation. Many from a younger generation feel that 'all the battles have been won for women' while many feminists from the 1970's know only too well the longevity and ingrained complexity of patriarchy. With more women in the boardroom, greater equality in legislative rights, and an increased critical mass of women's visibility as impressive role models in every aspect of life, one could think that women have gained true equality. The unfortunate fact is that women are still not paid equally to that of their male counterparts, women still are not present in equal numbers in business or politics, and globally women's education, health and the violence against them is worse than that of men.

However, great improvements have been made. We do have female astronauts and prime ministers, school girls are welcomed into university, women can work and have a family, women have real choices. And so the tone and nature of IWD has, for the past few years, moved from being a reminder about the negatives to a celebration of the positives.

GoogleAnnually on 8 March, thousands of events are held throughout the world to inspire women and celebrate achievements. A global web of rich and diverse local activity connects women from all around the world ranging from political rallies, business conferences, government activities and networking events through to local women's craft markets, theatric performances, fashion parades and more.

Many global corporations have also started to more actively support IWD by running their own internal events and through supporting external ones. For example, on 8 March search engine and media giant Google some years even changes its logo on its global search pages. Year on year IWD is certainly increasing in status. The United States even designates the whole month of March as 'Women's History Month'.

So make a difference, think globally and act locally !! Make everyday International Women's Day. Do your bit to ensure that the future for girls is bright, equal, safe and rewarding.

The internationalwomensday.com website was created and is managed by Australian entrepreneur and women's campaigner Glenda Stone as a global hub of IWD events and information.

Ms Stone says "A decade ago International Women's Day was disappearing. Activity in Europe, where International Women's Day actually began, was very low. Providing a global online platform helped sustain and accelerate momentum for this important day. Holding only a handful of events ten years ago, the United Kingdom has now become the global leader for International Women's Day activity, followed sharply by Canada, United States and Australia. 2011 will see thousands of events globally for the first time."

Facts & Background borrowed from www.internationalwomensday.com

   

Pasted from Wikipedia: Bell-Boeing V-22 Osprey

 

• • • • •

 

The Bell-Boeing V-22 Osprey is a multi-mission, military, tiltrotor aircraft with both a vertical takeoff and landing (VTOL), and short takeoff and landing (STOL) capability. It is designed to combine the functionality of a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft.

 

The V-22 originated from the U.S. Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program started in 1981. It was developed jointly by the Bell Helicopter, and Boeing Helicopters team, known as Bell Boeing, which produce the aircraft.[4] The V-22 first flew in 1989, and began years of flight testing and design alterations.

 

The United States Marine Corps began crew training for the Osprey in 2000, and fielded it in 2007. The Osprey's other operator, the U.S. Air Force fielded their version of the tiltrotor in 2009. Since entering service with the U.S. Marine Corps and Air Force, the Osprey has been deployed for combat operations in Iraq and Afghanistan.

 

Contents

 

1 Development

•• 1.1 Early development

•• 1.2 Flight testing and design changes

•• 1.3 Controversy

•• 1.4 Recent development

2 Design

3 Operational history

•• 3.1 US Marine Corps

•• 3.2 US Air Force

•• 3.3 Potential operators

4 Variants

5 Operators

6 Notable accidents

7 Specifications (MV-22B)

8 Notable appearances in media

9 See also

10 References

11 External links

 

Development

 

Early development

 

The failure of the Iran hostage rescue mission in 1980 demonstrated to the United States military a need[5] for "a new type of aircraft, that could not only take off and land vertically but also could carry combat troops, and do so at speed."[6] The U.S. Department of Defense began the Joint-service Vertical take-off/landing Experimental (JVX) aircraft program in 1981, under U.S. Army leadership. Later the U.S. Navy/Marine Corps took the lead.[7][8] The JVX combined requirements from the Marine Corps, Air Force, Army and Navy.[9][10] A request for proposals (RFP) was issued in December 1982 for JVX preliminary design work. Interest in the program was expressed by Aérospatiale, Bell Helicopter, Boeing Vertol, Grumman, Lockheed, and Westland. The DoD pushed for contractors to form teams. Bell partnered with Boeing Vertol. The Bell Boeing team submitted a proposal for a enlarged version of the Bell XV-15 prototype on 17 February 1983. This was the only proposal received and a preliminary design contract was awarded on 26 April 1983.[11][12]

 

The JVX aircraft was designated V-22 Osprey on 15 January 1985; by March that same year the first six prototypes were being produced, and Boeing Vertol was expanded to deal with the project workload.[13][14] Work has been split evenly between Bell and Boeing. Bell Helicopter manufactures and integrates the wing, nacelles, rotors, drive system, tail surfaces, and aft ramp, as well as integrates the Rolls-Royce engines and performs final assembly. Boeing Helicopters manufactures and integrates the fuselage, cockpit, avionics, and flight controls.[4][15] The USMC variant of the Osprey received the MV-22 designation and the Air Force variant received CV-22; reversed from normal procedure to prevent Marine Ospreys from having a conflicting designation with aircraft carriers (CV).[16] Full-scale development of the V-22 tilt-rotor aircraft began in 1986.[2] On 3 May 1986 the Bell-Boeing partnership was awarded a $1.714 billion contract for V-22 aircraft by the Navy, thus at this point the project had acquisition plans with all four arms of the U.S. military.[17]

 

The first V-22 was rolled out with significant media attention in May 1988.[18][19] However the project suffered several political blows. Firstly in the same year, the Army left the program, citing a need to focus its budget on more immediate aviation programs.[20] The project also faced considerable dialogue in the Senate, surviving two votes that both could have resulted in cancellation.[21][22] Despite the Senate's decision, the Department of Defense instructed the Navy not to spend more money on the Osprey.[23] At the same time, the Bush administration sought the cancellation of the project.[23]

 

Flight testing and design changes

 

The first of six MV-22 prototypes first flew on 19 March 1989 in the helicopter mode,[24] and on 14 September 1989 as a fixed-wing plane.[25] The third and fourth prototypes successfully completed the Osprey's first Sea Trials on the USS Wasp in December 1990.[26] However, the fourth and fifth prototypes crashed in 1991-92.[27] Flight tests were resumed in August 1993 after changes were incorporated in the prototypes.[2] From October 1992 until April 1993, Bell and Boeing redesigned the V-22 to reduce empty weight, simplify manufacture and reduce production costs. This redesigned version became the B-model.[28]

 

Flight testing of four full-scale development V-22s began in early 1997 when the first pre-production V-22 was delivered to the Naval Air Warfare Test Center, Naval Air Station Patuxent River, Maryland. The first EMD flight took place on 5 February 1997. The first of four low rate initial production aircraft, ordered on 28 April 1997, was delivered on 27 May 1999. Osprey number 10 completed the program's second Sea Trials, this time from the USS Saipan in January 1999.[2] During external load testing in April 1999, Boeing used a V-22 to lift and transport the M777 howitzer.[29] In 2000, Boeing announced that the V-22 would be fitted with a nose-mounted GAU-19 Gatling gun,[30] but the GAU-19 gun was later canceled.[31]

 

In 2000, there were two further fatal crashes, killing a total of 19 Marines, and the production was again halted while the cause of these crashes was investigated and various parts were redesigned.[32] The V-22 completed its final operational evaluation in June 2005. The evaluation was deemed successful; events included long range deployments, high altitude, desert and shipboard operations. The problems identified in various accidents had been addressed.[33]

 

Controversy

 

The V-22's development process has been long and controversial, partly due to its large cost increases.[34] When the development budget, first planned for $2.5 billion in 1986, increased to a projected $30 billion in 1988, then-Defense Secretary Dick Cheney tried to zero out its funding. He was eventually overruled by Congress.[32] As of 2008, $27 billion have been spent on the Osprey program and another $27.2 billion will be required to complete planned production numbers by the end of the program.[2]

 

The V-22 squadron's former commander at Marine Corps Air Station New River, Lt. Colonel Odin Lieberman, was relieved of duty in 2001 after allegations that he instructed his unit that they needed to falsify maintenance records to make the plane appear more reliable.[2][35] Three officers were later implicated in the falsification scandal.[34]

 

The aircraft is incapable of autorotation, and is therefore unable to land safely in helicopter mode if both engines fail. A director of the Pentagon's testing office in 2005 said that if the Osprey loses power while flying like a helicopter below 1,600 feet (490 m), emergency landings "are not likely to be survivable". But Captain Justin (Moon) McKinney, a V-22 pilot, says that this will not be a problem, "We can turn it into a plane and glide it down, just like a C-130".[31] A complete loss of power would require the failure of both engines, as a drive shaft connects the nacelles through the wing; one engine can power both proprotors.[36] While vortex ring state (VRS) contributed to a deadly V-22 accident, the aircraft is less susceptible to the condition than conventional helicopters and recovers more quickly.[5] The Marines now train new pilots in the recognition of and recovery from VRS and have instituted operational envelope limits and instrumentation to help pilots avoid VRS conditions.[32][37]

 

It was planned in 2000 to equip all V-22s with a nose-mounted Gatling gun, to provide "the V-22 with a strong defensive firepower capability to greatly increase the aircraft's survivability in hostile actions."[30] The nose gun project was canceled however, leading to criticism by retired Marine Corps Commandant General James L. Jones, who is not satisfied with the current V-22 armament.[31] A belly-mounted turret was later installed on some of the first V-22s sent to the War in Afghanistan in 2009.[38]

 

With the first combat deployment of the MV-22 in October 2007, Time Magazine ran an article condemning the aircraft as unsafe, overpriced, and completely inadequate.[31] The Marine Corps, however, responded with the assertion that much of the article's data were dated, obsolete, inaccurate, and reflected expectations that ran too high for any new field of aircraft.[39]

 

Recent development

 

On 28 September 2005, the Pentagon formally approved full-rate production for the V-22.[40] The plan is to boost production from 11 a year to between 24 and 48 a year by 2012. Of the 458 total planned, 360 are for the Marine Corps, 48 for the Navy, and 50 for the Air Force at an average cost of $110 million per aircraft, including development costs.[2] The V-22 had an incremental flyaway cost of $70 million per aircraft in 2007,[3] but the Navy hopes to shave about $10 million off that cost after a five-year production contract starts in 2008.[41]

 

The Bell-Boeing Joint Project Office in Amarillo, Texas will design a new integrated avionics processor to resolve electronics obsolescence issues and add new network capabilities.[42]

 

Design

 

The Osprey is the world's first production tiltrotor aircraft, with one three-bladed proprotor, turboprop engine, and transmission nacelle mounted on each wingtip. It is classified as a powered lift aircraft by the Federal Aviation Administration.[43] For takeoff and landing, it typically operates as a helicopter with the nacelles vertical (rotors horizontal). Once airborne, the nacelles rotate forward 90° in as little as 12 seconds for horizontal flight, converting the V-22 to a more fuel-efficient, higher-speed turboprop airplane. STOL rolling-takeoff and landing capability is achieved by having the nacelles tilted forward up to 45°. For compact storage and transport, the V-22's wing rotates to align, front-to-back, with the fuselage. The proprotors can also fold in a sequence taking 90 seconds.[44]

 

Most Osprey missions will use fixed wing flight 75 percent or more of the time, reducing wear and tear on the aircraft and reducing operational costs.[45] This fixed wing flight is higher than typical helicopter missions allowing longer range line-of-sight communications and so improved command and control.[2] Boeing has stated the V-22 design loses 10% of its vertical lift over a Tiltwing design when operating in helicopter mode because of airflow resistance due to the wings, but that the Tiltrotor design has better short takeoff and landing performance.[46]

 

The V-22 is equipped with a glass cockpit, which incorporates four Multi-function displays (MFDs) and one shared Central Display Unit (CDU), allowing the pilots to display a variety of images including: digimaps centered or decentered on current position, FLIR imagery, primary flight instruments, navigation (TACAN, VOR, ILS, GPS, INS), and system status. The flight director panel of the Cockpit Management System (CMS) allows for fully-coupled (aka: autopilot) functions which will take the aircraft from forward flight into a 50-foot hover with no pilot interaction other than programming the system.[47] The glass cockpit of the canceled CH-46X was derived from the V-22.[48]

 

The V-22 is a fly-by-wire aircraft with triple-redundant flight control systems.[49] With the nacelles pointing straight up in conversion mode at 90° the flight computers command the aircraft to fly like a helicopter, with cyclic forces being applied to a conventional swashplate at the rotor hub. With the nacelles in airplane mode (0°) the flaperons, rudder, and elevator fly the aircraft like an airplane. This is a gradual transition and occurs over the rotation range of the nacelles. The lower the nacelles, the greater effect of the airplane-mode control surfaces.[50] The nacelles can rotate past vertical to 97.5° for rearward flight.[51][52]

 

The Osprey can be armed with one M240 7.62x51mm NATO (.308 in caliber) or M2 .50 in caliber (12.7 mm) machine gun on the loading ramp, that can be fired rearward when the ramp is lowered. A GAU-19 three-barrel .50 in gatling gun mounted below the V-22's nose has also been studied for future upgrade.[31][53] BAE Systems developed a remotely operated turreted weapons system for the V-22,[54] which was installed on half of the first V-22s deployed to Afghanistan in 2009.[38] The 7.62 mm belly gun turret is remotely operated by a gunner inside the aircraft, who acquires targets with a separate pod using color television and forward looking infrared imagery.

 

U.S. Naval Air Systems Command is working on upgrades to increase the maximum speed from 250 knots (460 km/h; 290 mph) to 270 knots (500 km/h; 310 mph), increase helicopter mode altitude limit from 10,000 feet (3,000 m) to 12,000 feet (3,700 m) or 14,000 feet (4,300 m), and increase lift performance.[55]

 

Operational history

 

US Marine Corps

 

Marine Corps crew training on the Osprey has been conducted by VMMT-204 since March 2000. On 3 June 2005, the Marine Corps helicopter squadron Marine Medium Helicopter 263 (HMM-263), stood down to begin the process of transitioning to the MV-22 Osprey.[56] On 8 December 2005, Lieutenant General Amos, commander of the II MEF, accepted the delivery of the first fleet of MV-22s, delivered to HMM-263. The unit reactivated on 3 March 2006 as the first MV-22 squadron and was redesignated VMM-263. On 31 August 2006, VMM-162 (the former HMM-162) followed suit. On 23 March 2007, HMM-266 became Marine Medium Tiltrotor Squadron 266 (VMM-266) at Marine Corps Air Station New River, North Carolina.[57]

 

The Osprey has been replacing existing CH-46 Sea Knight squadrons.[58] The MV-22 reached initial operational capability (IOC) with the U.S. Marine Corps on 13 June 2007.[1] On 10 July 2007 an MV-22 Osprey landed aboard the Royal Navy aircraft carrier, HMS Illustrious in the Atlantic Ocean. This marked the first time a V-22 had landed on any non-U.S. vessel.[59]

 

On 13 April 2007, the U.S. Marine Corps announced that it would be sending ten V-22 aircraft to Iraq, the Osprey's first combat deployment. Marine Corps Commandant, General James Conway, indicated that over 150 Marines would accompany the Osprey set for September deployment to Al-Asad Airfield.[60][61] On 17 September 2007, ten MV-22Bs of VMM-263 left for Iraq aboard the USS Wasp. The decision to use a ship rather than use the Osprey's self-deployment capability was made because of concerns over icing during the North Atlantic portion of the trip, lack of available KC-130s for mid-air refueling, and the availability of the USS Wasp.[62]

 

The Osprey has provided support in Iraq, racking up some 2,000 flight hours over three months with a mission capable availability rate of 68.1% as of late-January 2008.[63] They are primarily used in Iraq's western Anbar province for routine cargo and troop movements, and also for riskier "aero-scout" missions. General David Petraeus, the top U.S. military commander in Iraq, used one to fly around Iraq on Christmas Day 2007 to visit troops.[64] Then-presidential candidate Barack Obama also flew in Ospreys during his high profile 2008 tour of Iraq.[65]

 

The only major problem has been obtaining the necessary spare parts to maintain the aircraft.[66] The V-22 had flown 3,000 sorties totaling 5,200 hours in Iraq as of July 2008.[67] USMC leadership expect to deploy MV-22s to Afghanistan in 2009.[66][68] General George J. Trautman, III praised the increased range of the V-22 over the legacy helicopters in Iraq and said that "it turned his battle space from the size of Texas into the size of Rhode Island."[69]

 

Naval Air Systems Command has devised a temporary fix for sailors to place portable heat shields under Osprey engines to prevent damage to the decks of some of the Navy's smaller amphibious ships, but they determined that a long term solution to the problem would require these decks be redesigned with heat resistant deck coatings, passive thermal barriers and changes in ship structure in order to operate V-22s and F-35Bs.[70]

 

A Government Accountability Office study reported that by January 2009 the Marines had 12 MV-22s operating in Iraq and they managed to successfully complete all assigned missions. The same report found that the V-22 deployments had mission capable rates averaging 57% to 68% and an overall full mission capable rate of only 6%. It also stated that the aircraft had shown weakness in situational awareness, maintenance, shipboard operations and the ability to transport troops and external cargo.[71] That study also concluded that the "deployments confirmed that the V-22’s enhanced speed and range enable personnel and internal cargo to be transported faster and farther than is possible with the legacy helicopters it is replacing".[71]

 

The MV-22 saw its first offensive combat mission, Operation Cobra's Anger on 4 December 2009. Ospreys assisted in inserting 1,000 Marines and 150 Afghan troops into the Now Zad Valley of Helmand Province in southern Afghanistan to disrupt communication and supply lines of the Taliban.[38] In January 2010 the MV-22 Osprey is being sent to Haiti as part of Operation Unified Response relief efforts after the earthquake there. This will be the first use the Marine V-22 in a humanitarian mission.[72]

 

US Air Force

 

The Air Force's first operational CV-22 Osprey was delivered to the 58th Special Operations Wing (58th SOW) at Kirtland Air Force Base, New Mexico on 20 March 2006. This and subsequent aircraft will become part of the 58th SOW's fleet of aircraft used for training pilots and crew members for special operations use.[73] On 16 November 2006, the Air Force officially accepted the CV-22 in a ceremony conducted at Hurlburt Field, Florida.[74]

 

The US Air Force's first operational deployment of the Osprey sent four CV-22s to Mali in November 2008 in support of Exercise Flintlock. The CV-22s flew nonstop from Hurlburt Field, Florida with in-flight refueling.[5] AFSOC declared that the 8th Special Operations Squadron reached Initial Operational Capability on 16 March 2009, with six of its planned nine CV-22s operational.[75]

 

In June 2009, CV-22s of the 8th Special Operations Squadron delivered 43,000 pounds (20,000 kg) of humanitarian supplies to remote villages in Honduras that were not accessible by conventional vehicles.[76] In November 2009, the 8th SO Squadron and its six CV-22s returned from a three-month deployment in Iraq.[77]

 

The first possible combat loss of an Osprey occurred on 9 April, 2010, as a CV-22 went down near Qalat, Zabul Province, Afghanistan, killing four.[78][79]

 

Potential operators

 

In 1999 the V-22 was studied for use in the United Kingdom's Royal Navy,[80] it has been raised several times as a candidate for the role of Maritime Airborne Surveillance and Control (MASC).[81]

 

Israel had shown interest in the purchase of MV-22s, but no order was placed.[82][83] Flightglobal reported in late 2009 that Israel has decided to wait for the CH-53K instead.[84]

 

The V-22 Osprey is a candidate for the Norwegian All Weather Search and Rescue Helicopter (NAWSARH) that is planned to replace the Westland Sea King Mk.43B of the Royal Norwegian Air Force in 2015.[85] The other candidates for the NAWSARH contract of 10-12 helicopters are AgustaWestland AW101 Merlin, Eurocopter EC225, NHIndustries NH90 and Sikorsky S-92.[86]

 

Bell Boeing has made an unsolicited offer of the V-22 for US Army medical evacuation needs.[87] However the Joint Personnel Recovery Agency issued a report that said that a common helicopter design would be needed for both combat recovery and medical evacuation and that the V-22 would not be suitable for recovery missions because of the difficulty of hoist operations and lack of self-defense capabilities.[88]

 

The US Navy remains a potential user of the V-22, but its role and mission with the Navy remains unclear. The latest proposal is to replace the C-2 Greyhound with the V-22 in the fleet logistics role. The V-22 would have the advantage of being able to land on and support non-carriers with rapid delivery of supplies and people between the ships of a taskforce or to ships on patrol beyond helicopter range.[89] Loren B. Thompson of the Lexington Institute has suggested V-22s for use in combat search and rescue and Marine One VIP transport, which also need replacement aircraft.[90]

 

Variants

  

V-22A 

•• Pre-production full-scale development aircraft used for flight testing. These are unofficially considered A-variants after 1993 redesign.[91]

  

HV-22 

•• The U.S. Navy considered an HV-22 to provide combat search and rescue, delivery and retrieval of special warfare teams along with fleet logistic support transport. However, it chose the MH-60S for this role in 1992.[92]

  

SV-22 

•• The proposed anti-submarine warfare Navy variant. The Navy studied the SV-22 in the 1980s to replace S-3 and SH-2 aircraft.[93]

  

MV-22B 

•• Basic U.S. Marine Corps transport; original requirement for 552 (now 360). The Marine Corps is the lead service in the development of the V-22 Osprey. The Marine Corps variant, the MV-22B, is an assault transport for troops, equipment and supplies, capable of operating from ships or from expeditionary airfields ashore. It is replacing the Marine Corps' CH-46E[57] and CH-53D.[94]

  

CV-22B 

•• Air Force variant for the U.S. Special Operations Command (USSOCOM). It will conduct long-range, special operations missions, and is equipped with extra fuel tanks and terrain-following radar.[95][96]

 

Operators

 

 United States

 

United States Air Force

 

•• 8th Special Operations Squadron (8 SOS) at Hurlburt Field, Florida

•• 71st Special Operations Squadron (71 SOS) at Kirtland Air Force Base, New Mexico

•• 20th Special Operations Squadron (20 SOS) at Cannon Air Force Base, New Mexico

 

United States Marine Corps

 

•• VMM-161

•• VMM-162

•• VMM-261

•• VMM-263

•• VMM-264

•• VMM-266

•• VMM-365

•• VMMT-204 - Training squadron

•• VMX-22 - Marine Tiltrotor Operational Test and Evaluation Squadron

 

Notable accidents

 

Main article: Accidents and incidents involving the V-22 Osprey

 

From 1991 to 2000 there were four significant crashes, and a total of 30 fatalities, during testing.[32] Since becoming operational in 2007, the V-22 has had one possible combat loss due to an unknown cause, no losses due to accidents, and seven other notable, but minor, incidents.

 

• On 11 June 1991, a mis-wired flight control system led to two minor injuries when the left nacelle struck the ground while the aircraft was hovering 15 feet (4.6 m) in the air, causing it to bounce and catch fire.[97]

 

• On 20 July 1992, a leaking gearbox led to a fire in the right nacelle, causing the aircraft to drop into the Potomac River in front of an audience of Congressmen and other government officials at Quantico, killing all seven on board and grounding the aircraft for 11 months.[98]

 

• On 8 April 2000, a V-22 loaded with Marines to simulate a rescue, attempted to land at Marana Northwest Regional Airport in Arizona, stalled when its right rotor entered vortex ring state, rolled over, crashed, and exploded, killing all 19 on board.[37]

 

• On 11 December 2000, after a catastrophic hydraulic leak and subsequent software instrument failure, a V-22 fell 1,600 feet (490 m) into a forest in Jacksonville, North Carolina, killing all four aboard. This caused the Marine Corps to ground their fleet of eight V-22s, the second grounding that year.[99][100]

 

Specifications (MV-22B)

 

Data from Boeing Integrated Defense Systems,[101] Naval Air Systems Command,[102] US Air Force CV-22 fact sheet,[95] Norton,[103] and Bell[104]

 

General characteristics

 

Crew: Four (pilot, copilot and two flight engineers)

Capacity: 24 troops (seated), 32 troops (floor loaded) or up to 15,000 lb (6,800 kg) of cargo (dual hook)

Length: 57 ft 4 in (17.5 m)

Rotor diameter: 38 ft 0 in (11.6 m)

Wingspan: 45 ft 10 in (14 m)

Width with rotors: 84 ft 7 in (25.8 m)

Height: 22 ft 1 in/6.73 m; overall with nacelles vertical (17 ft 11 in/5.5 m; at top of tailfins)

Disc area: 2,268 ft² (212 m²)

Wing area: 301.4 ft² (28 m²)

Empty weight: 33,140 lb (15,032 kg)

Loaded weight: 47,500 lb (21,500 kg)

Max takeoff weight: 60,500 lb (27,400 kg)

Powerplant:Rolls-Royce Allison T406/AE 1107C-Liberty turboshafts, 6,150 hp (4,590 kW) each

 

Performance

 

Maximum speed: 250 knots (460 km/h, 290 mph) at sea level / 305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)[105]

Cruise speed: 241 knots (277 mph, 446 km/h) at sea level

Range: 879 nmi (1,011 mi, 1,627 km)

Combat radius: 370 nmi (426 mi, 685 km)

Ferry range: 1,940 nmi (with auxiliary internal fuel tanks)

Service ceiling: 26,000 ft (7,925 m)

Rate of climb: 2,320 ft/min (11.8 m/s)

Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)

Power/mass: 0.259 hp/lb (427 W/kg)

 

Armament

 

• 1× M240 machine gun on ramp, optional

 

Notable appearances in media

 

Main article: Aircraft in fiction#V-22 Osprey

 

See also

 

Elizabeth A. Okoreeh-Baah, USMC - first female to pilot a V-22 Osprey

 

Related development

 

Bell XV-15[106]

Bell/Agusta BA609

Bell Boeing Quad TiltRotor

 

Comparable aircraft

 

Canadair CL-84

LTV XC-142

 

Related lists

 

List of military aircraft of the United States

List of VTOL aircraft

 

References

 

Bibliography

 

• Markman, Steve and Bill Holder. "Bell/Boeing V-22 Osprey Tilt-Engine VTOL Transport (U.S.A.)". Straight Up: A History of Vertical Flight. Schiffer Publishing, 2000. ISBN 0-7643-1204-9.

• Norton, Bill. Bell Boeing V-22 Osprey, Tiltrotor Tactical Transport. Midland Publishing, 2004. ISBN 1-85780-165-2.

 

External links

 

Wikimedia Commons has media related to: V-22 Osprey

 

Official Boeing V-22 site

Official Bell V-22 site

V-22 Osprey web, and www.history.navy.mil/planes/v-22.html

CV-22 fact sheet on USAF site

www.globalsecurity.org/military/systems/aircraft/v-22.htm

www.airforce-technology.com/projects/osprey/

Onward and Upward

"Flight of the Osprey", US Navy video of V-22 operations

Pasted from Wikipedia: Bell-Boeing V-22 Osprey

 

• • • • •

 

The Bell-Boeing V-22 Osprey is a multi-mission, military, tiltrotor aircraft with both a vertical takeoff and landing (VTOL), and short takeoff and landing (STOL) capability. It is designed to combine the functionality of a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft.

 

The V-22 originated from the U.S. Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program started in 1981. It was developed jointly by the Bell Helicopter, and Boeing Helicopters team, known as Bell Boeing, which produce the aircraft.[4] The V-22 first flew in 1989, and began years of flight testing and design alterations.

 

The United States Marine Corps began crew training for the Osprey in 2000, and fielded it in 2007. The Osprey's other operator, the U.S. Air Force fielded their version of the tiltrotor in 2009. Since entering service with the U.S. Marine Corps and Air Force, the Osprey has been deployed for combat operations in Iraq and Afghanistan.

 

Contents

 

1 Development

•• 1.1 Early development

•• 1.2 Flight testing and design changes

•• 1.3 Controversy

•• 1.4 Recent development

2 Design

3 Operational history

•• 3.1 US Marine Corps

•• 3.2 US Air Force

•• 3.3 Potential operators

4 Variants

5 Operators

6 Notable accidents

7 Specifications (MV-22B)

8 Notable appearances in media

9 See also

10 References

11 External links

 

Development

 

Early development

 

The failure of the Iran hostage rescue mission in 1980 demonstrated to the United States military a need[5] for "a new type of aircraft, that could not only take off and land vertically but also could carry combat troops, and do so at speed."[6] The U.S. Department of Defense began the Joint-service Vertical take-off/landing Experimental (JVX) aircraft program in 1981, under U.S. Army leadership. Later the U.S. Navy/Marine Corps took the lead.[7][8] The JVX combined requirements from the Marine Corps, Air Force, Army and Navy.[9][10] A request for proposals (RFP) was issued in December 1982 for JVX preliminary design work. Interest in the program was expressed by Aérospatiale, Bell Helicopter, Boeing Vertol, Grumman, Lockheed, and Westland. The DoD pushed for contractors to form teams. Bell partnered with Boeing Vertol. The Bell Boeing team submitted a proposal for a enlarged version of the Bell XV-15 prototype on 17 February 1983. This was the only proposal received and a preliminary design contract was awarded on 26 April 1983.[11][12]

 

The JVX aircraft was designated V-22 Osprey on 15 January 1985; by March that same year the first six prototypes were being produced, and Boeing Vertol was expanded to deal with the project workload.[13][14] Work has been split evenly between Bell and Boeing. Bell Helicopter manufactures and integrates the wing, nacelles, rotors, drive system, tail surfaces, and aft ramp, as well as integrates the Rolls-Royce engines and performs final assembly. Boeing Helicopters manufactures and integrates the fuselage, cockpit, avionics, and flight controls.[4][15] The USMC variant of the Osprey received the MV-22 designation and the Air Force variant received CV-22; reversed from normal procedure to prevent Marine Ospreys from having a conflicting designation with aircraft carriers (CV).[16] Full-scale development of the V-22 tilt-rotor aircraft began in 1986.[2] On 3 May 1986 the Bell-Boeing partnership was awarded a $1.714 billion contract for V-22 aircraft by the Navy, thus at this point the project had acquisition plans with all four arms of the U.S. military.[17]

 

The first V-22 was rolled out with significant media attention in May 1988.[18][19] However the project suffered several political blows. Firstly in the same year, the Army left the program, citing a need to focus its budget on more immediate aviation programs.[20] The project also faced considerable dialogue in the Senate, surviving two votes that both could have resulted in cancellation.[21][22] Despite the Senate's decision, the Department of Defense instructed the Navy not to spend more money on the Osprey.[23] At the same time, the Bush administration sought the cancellation of the project.[23]

 

Flight testing and design changes

 

The first of six MV-22 prototypes first flew on 19 March 1989 in the helicopter mode,[24] and on 14 September 1989 as a fixed-wing plane.[25] The third and fourth prototypes successfully completed the Osprey's first Sea Trials on the USS Wasp in December 1990.[26] However, the fourth and fifth prototypes crashed in 1991-92.[27] Flight tests were resumed in August 1993 after changes were incorporated in the prototypes.[2] From October 1992 until April 1993, Bell and Boeing redesigned the V-22 to reduce empty weight, simplify manufacture and reduce production costs. This redesigned version became the B-model.[28]

 

Flight testing of four full-scale development V-22s began in early 1997 when the first pre-production V-22 was delivered to the Naval Air Warfare Test Center, Naval Air Station Patuxent River, Maryland. The first EMD flight took place on 5 February 1997. The first of four low rate initial production aircraft, ordered on 28 April 1997, was delivered on 27 May 1999. Osprey number 10 completed the program's second Sea Trials, this time from the USS Saipan in January 1999.[2] During external load testing in April 1999, Boeing used a V-22 to lift and transport the M777 howitzer.[29] In 2000, Boeing announced that the V-22 would be fitted with a nose-mounted GAU-19 Gatling gun,[30] but the GAU-19 gun was later canceled.[31]

 

In 2000, there were two further fatal crashes, killing a total of 19 Marines, and the production was again halted while the cause of these crashes was investigated and various parts were redesigned.[32] The V-22 completed its final operational evaluation in June 2005. The evaluation was deemed successful; events included long range deployments, high altitude, desert and shipboard operations. The problems identified in various accidents had been addressed.[33]

 

Controversy

 

The V-22's development process has been long and controversial, partly due to its large cost increases.[34] When the development budget, first planned for $2.5 billion in 1986, increased to a projected $30 billion in 1988, then-Defense Secretary Dick Cheney tried to zero out its funding. He was eventually overruled by Congress.[32] As of 2008, $27 billion have been spent on the Osprey program and another $27.2 billion will be required to complete planned production numbers by the end of the program.[2]

 

The V-22 squadron's former commander at Marine Corps Air Station New River, Lt. Colonel Odin Lieberman, was relieved of duty in 2001 after allegations that he instructed his unit that they needed to falsify maintenance records to make the plane appear more reliable.[2][35] Three officers were later implicated in the falsification scandal.[34]

 

The aircraft is incapable of autorotation, and is therefore unable to land safely in helicopter mode if both engines fail. A director of the Pentagon's testing office in 2005 said that if the Osprey loses power while flying like a helicopter below 1,600 feet (490 m), emergency landings "are not likely to be survivable". But Captain Justin (Moon) McKinney, a V-22 pilot, says that this will not be a problem, "We can turn it into a plane and glide it down, just like a C-130".[31] A complete loss of power would require the failure of both engines, as a drive shaft connects the nacelles through the wing; one engine can power both proprotors.[36] While vortex ring state (VRS) contributed to a deadly V-22 accident, the aircraft is less susceptible to the condition than conventional helicopters and recovers more quickly.[5] The Marines now train new pilots in the recognition of and recovery from VRS and have instituted operational envelope limits and instrumentation to help pilots avoid VRS conditions.[32][37]

 

It was planned in 2000 to equip all V-22s with a nose-mounted Gatling gun, to provide "the V-22 with a strong defensive firepower capability to greatly increase the aircraft's survivability in hostile actions."[30] The nose gun project was canceled however, leading to criticism by retired Marine Corps Commandant General James L. Jones, who is not satisfied with the current V-22 armament.[31] A belly-mounted turret was later installed on some of the first V-22s sent to the War in Afghanistan in 2009.[38]

 

With the first combat deployment of the MV-22 in October 2007, Time Magazine ran an article condemning the aircraft as unsafe, overpriced, and completely inadequate.[31] The Marine Corps, however, responded with the assertion that much of the article's data were dated, obsolete, inaccurate, and reflected expectations that ran too high for any new field of aircraft.[39]

 

Recent development

 

On 28 September 2005, the Pentagon formally approved full-rate production for the V-22.[40] The plan is to boost production from 11 a year to between 24 and 48 a year by 2012. Of the 458 total planned, 360 are for the Marine Corps, 48 for the Navy, and 50 for the Air Force at an average cost of $110 million per aircraft, including development costs.[2] The V-22 had an incremental flyaway cost of $70 million per aircraft in 2007,[3] but the Navy hopes to shave about $10 million off that cost after a five-year production contract starts in 2008.[41]

 

The Bell-Boeing Joint Project Office in Amarillo, Texas will design a new integrated avionics processor to resolve electronics obsolescence issues and add new network capabilities.[42]

 

Design

 

The Osprey is the world's first production tiltrotor aircraft, with one three-bladed proprotor, turboprop engine, and transmission nacelle mounted on each wingtip. It is classified as a powered lift aircraft by the Federal Aviation Administration.[43] For takeoff and landing, it typically operates as a helicopter with the nacelles vertical (rotors horizontal). Once airborne, the nacelles rotate forward 90° in as little as 12 seconds for horizontal flight, converting the V-22 to a more fuel-efficient, higher-speed turboprop airplane. STOL rolling-takeoff and landing capability is achieved by having the nacelles tilted forward up to 45°. For compact storage and transport, the V-22's wing rotates to align, front-to-back, with the fuselage. The proprotors can also fold in a sequence taking 90 seconds.[44]

 

Most Osprey missions will use fixed wing flight 75 percent or more of the time, reducing wear and tear on the aircraft and reducing operational costs.[45] This fixed wing flight is higher than typical helicopter missions allowing longer range line-of-sight communications and so improved command and control.[2] Boeing has stated the V-22 design loses 10% of its vertical lift over a Tiltwing design when operating in helicopter mode because of airflow resistance due to the wings, but that the Tiltrotor design has better short takeoff and landing performance.[46]

 

The V-22 is equipped with a glass cockpit, which incorporates four Multi-function displays (MFDs) and one shared Central Display Unit (CDU), allowing the pilots to display a variety of images