2008, 2009

    Newer Older

    Un casse tête qui n'en finira peut être jamais. (This is the beginning of a famous number discovered this year) Larger

    Also a good abstraction for money. If you don't get it that's all right. Most of our economists, politicians and intellectuals have no clue either.

    ....

    tataAnne, and 3 other people added this photo to their favorites.

    1. NYCandre 65 months ago | reply

      If you really want to know:
      202254406890977335534188152263156829946846602582743182989551057360547514579758125084672139009589634530142096674488997709537188955936642102102609827222867209094245213683609078595710088727982045400766776078970972820083871787076611720323474654277719947066506641085178206060588550242331070601428274403591083099729227146976366009251638432203004132558593606099368410147558669639451207986081692873430267888191337807430647620642291502700539732849897455522471617258745894332154857490124293421772319118057958580616033668567246389175814913930421920824625863837228595366244688557191735445507903204303126071822912483703260220297690285269328111291941167355998658607073988508291348939270033384679151503399999398372827661053946738028022852730393822318359072939469154409190871342295673971237314547997236026198501927301485301363071270860321374867092957275639845069682212419253547190992649348616571765176965438269282390210531597174280935091700072738832384230276370683998814412975801347947447571271130150779700876629845240042622484136388022490598550203098631890245533810867\1813930225097456459165488331548533533694749967058327030213505420156826437985453655261516924690880807812240302797775550693923515647078578445988525731422427621151741443246160371752235552643609659709882504463240944854247007304295526902725211793015766360931798292456970124619091293712250958629678678665799671228473954588887746785740351216228438532291463338287016720330459463326950131717278626401657215550359723605842983841820935843665777914487739319413277798653460427286479143365054564793945243268435377096540857889217271578202106852548307417281424064408762395493948015281055577552666627530806880170201701434534494024791513689642749113635837272215208313775451109546764624837494275407600082184598321267322345186687086598755149658324319062431760954454683940005644233446034792178822237345040824509152282173913362304263136295441353650515518913911876827556763599537430823956642971769131120215934315480317934655643725894761876565134728697792508068646097025526123017790521934686798669442419797886034310729491901831881237530752437680691467296811009528871627859926279416488401149261171543516857909505004569499566686579305183580472004757622919841869911862825221464516855800399151499129361767115485124474587162223197307047071886656938439926128318255302915186721351777713845492910925156042771431533489788858705811740201391821581537884669529696676747806933998291809159792895350625813100562294973071403494308977369327567390739814495410005239495252187768398098933758804651010489310526354213150427117733840063002233340737020056238433561237409524324888341415329020875205470602266864769211157530038081823396337132353699912219114384603971672313839358594321116632030662927906391434204167814829204528749817213170232854130888020566370608411547078975010646002609290943089929924210054416989739792121916426786835881412017008108786386637987086592138225432453291478426935170157520970517328840755766570083898752084154741005353479575418570252253061423179870368700612663242965388229124415524060399193086027594441905764996962385402121809993601889383954555967236399439826709917350028040820728007705845577862936386554829815205465782551989521309206392989132870868412604583191193215628072245577407920937306212290075108828204802760575684543581320083853752933007417639491783296000029626715160807940713234751712275301967951787192834047624422896012393158923725392192273820439198329417579889861349939786839159699502746818507418742128780493227520359167924457715060666040851274115569725849983830294498686083252083503004867051791786397046786745800645783896617232172228164286934312012870671977838766520207967020399275973306468610070660446476904416419700144547702690094072521789131535761740016567359413611138051066338059064690901542372499303364361973764233372014546005710791377109885126015958915056004760347173658916515369365352570466620690390628218703757648824884709034391606399089939672642983527862334334885689596559587710714069359277668259006773296220142817427018609717818297457973644997653834892193986918877772710066411437262066808124369761531516949625197850223505223479599673171153228919250235229219424233010067061493990353522005574540350789580532864305114355319450465110252650467759798969845222095818715767830599930257990070024511846390387266766377755096232785009953862804674281300826937518799557093849082617748485048303522559661336398628440466193788436605050061146248152648796635051734392007611371545359269914559702148042932396095965705432771846723130489361066268739067049143958624787053664728557118731308942233703483593448883348590084969880481318424705115971312919215796206804826509847017118926038845578887268666541370950897165019616761597072306769492182364533792823057863237690903219351308399125821592866031958473927943412908789159694601497793251042790882237298566292330716835898115585174712263958512969887262357025932734669810286020352087450711416464402364177988614169960115149935117338244991814892825258904590687191882496004105372925826792313307631058760855885278567010409145132155912627877546245748526855158701914796194028633183740044268776539983134090344170672759490530514268301610350209573063813314519192011258657595682583945886244295733757368652511436467352669142152630871556825608793428704205856558492610030553375677887760284430834336836509992549783887264642574203303247379953181674485025974149616946174133812976759951189353658374305230831840994418548450975261605132315020187007817425287516729792466356773489788916303790306289100553609780821089853737055158805874306351541157675464317456219450388092939967277599273077834845670890109319933235777095685897897901266430563290713851131648495668353558954220155288129601172986755276609209005642133809649628276133461688435351191050201146392042384566198575985933384942346873619915013897516278313929787571111365270885040618364039408150096144460934401957982171486099642269089075219218085073299584334910754978978956928535362629344333053735958316406762649784708982992000190920438994456234259766463253610242443057842586886433321703722599946186255337550677705833728444430032065958349700199043022545642943647782369212703788922215144712266436649129701801121548995928910022712097584967139166183721164172322072844436217457235009636450745922891331951253867370788474353730525505392202988299864444374789842109673829697140672561896591727435171646466175712689389310338726808762514239433231390429695750658436794151953895968350188599920463383882810990388917844899568345921657956573007130733733372278696150987383266353433668099619444959886685746435523319043197756868393964433323961283243393794728270213123772039814166757475823520922943753341416951943055942919480212245851050938756862451227766051482485019258676049016047093764267259798279048715990807081325590085747442855612094132639154874985927889976885375094777020491366725380951149749076855309948742693073309470359360104970058406753847961557843494462950353622072021589740223239071948029027104354721041457843118579719031870232158044357616888542699644757347248460273089352277656897552753368191764662470447328709061795137407618411434925590400158776268171892135168438154614519838984938570961846419978553486174863986777080278036661131045791396881943580457219216579898789256950874871429649082985224735524079948783354889962630258772358353511696148204527801073829558261448775734847896279360094484738059872313393267030018947519019452517872330733280512595388382716702838735662251317097302629538588766586348030832353690544478733000959979184744739955292045549899690745495920721931013405318672346996627425358677043101757512693016402918832227907772071918916369810876053707312049860929502767657236454844203428186315827738793231751065952049296876743014621207876278365609142027019176636572256966973382985744848633947324013072630191187402126925635643881184859463742548071060642090088615798397398633888511299925347656263273384917706082188304737456408960890518356625220761155169069657838435128109105010458050204994296427847014115836382775170703825223853534108092436983823387309052991507001687976336728132184832386819567229100422636643432104950169976534932447496803218098961586280245942738248429667847271161595277096698190245922184397830461588443495388638037363807563571227061301768832725828418943830472581670753732749476122792328723504460813923560872005523945097758545122816952148729093778126793347469085741690914893451670691223775308716428973852707664944960268032503524914644300071251055861080713246491917804411344940574769134610504897946657325857342680325586044287344503901636501402890317096927300505858933750740079783904051892402748263882025274341887877654375253706141979893922551944830287121250817659067221568980901055788069389930214056638475200843312397367123956083718874697054873410921880189414353884254865710681359352019573995046506812530114799405176339544967798178157971630399736392191505213334235864049376553443790027284272333690082373210932049063090198391088490787871780378323297633403854780528710236244704665957116057658518507785337103806696727606521416472011976303148777980629508021232304735254331766137198583455573339566020259543781414782296340060632443658388504770256054586872558033936090294047543612575085232406609133549349599975254375403025747764659496197479135088658048154246257070290341805449280674167900731154828239515143819370723335357464404062057809934856716648862683908743482574674561042432945863789386833079317641271855740202771200911125728801612320296999191400048594371276291328158392870028201250640431380974164114854748393155352976302725414678419222386227429817114032277405847274062433452622777563409729550969269964109235427350528997110225887008323818334646318523729687471608049835889744958130934043963839134340571715174819644531780905912209379957063965935548892342154475331163366899061708626375976210861235767778252333317556394127985657178578590730677154863390615468090876089230911270335526010261978042247395682874032732136511676837883561734350521040268020081663063855679511965936476629415297135978526701744152404261034095120815279202754126433331501316407189703116962294120083460917724491846053891898239598894660702175032131809303120469625776743589027702316273407901145262875212161252930542039847443332959255258415766252080283364539074829051250490329636693579578572316539049021746906308151833778174673367810959732905431390407213032391602386536320259652414986739373060139350065898439041652627025640000254861877909776854348619481449368979440633928450635667754426422619942099778152409564453818005518424345397172305637035364111274998443193998044219481321176462338794816522483537831208797234589135227036121868413714919378970889599428879923761247991749307166673335032228170457187120251933737018746569961210038549993706326956694131345499114617073405671736864160989513063075790508276619356481113271272279842982732955290539255195675380119820719794124174787930325228142076797387741542307384680809146418438351271639336734620619813838909120555995929341105596050864703055935598187913479953769204516834855551421285902995426043592883967291365587270508655593665219804813718609113306336698803154777579346494040678072640916627043538621287785745166427289683731561151573456124279664299208480835777484200614183728826690195345238169269074272083019361529543276275801687431842012866915747683075587614002647171077349832359330026513680165218562786788379378448180687321769549479903631766692848164869036484732852399916477
      867032902663536 ...

    2. daisy70 65 months ago | reply

      I once sent a picture of a screenful of random numbers to a mathematician friend of mine and asked him to "find the pattern." Funny, huh? He got mad at me ;-)

    3. NYCandre 65 months ago | reply

      I used to think numbers "trivial" and boring. In this case these are recently famous numbers - any mathematician would (probably) recognize ;-)

      Now what interesting patterns can you see? Notice there is a 2222, a 8888, .. and also ... but no.... ; and both 2008 and 2009 but no 2010.

    4. vision revision 65 months ago | reply

      If you add them all up they equal 9

    5. rabinal 65 months ago | reply

      I knew a number theorist once. A mathematical educator. I said, "what is so special about numbers then?" and he said, "well, tell me a number between 1 and 999 and I'll tell you something unique and interesting about it." So I said "xyz" (I forget which one) and he said "Aha, xyz is a very unique and interesting number because it is the only number between 1 and 999 which, on the spur of the moment, I can't think of anything unique and interesting about"

    6. NYCandre 65 months ago | reply

      @vision: ah , very good! - great incentive for me to dig out some tools and play with these numbers a bit
      @rabinal: defnitely a "math educator" response ;-) I used to rail against math teachers who really didn't understand math - and have learned since that this is an ongoing issue - not unlike what happens in many other 'sciences' - the worst offense is probably in economics and the obfuscation of monetary facts/ history that are in the public domain but not discussed much.

      Interesting idea, I am 99% ** certain that each of the first 999 th digits has an interesting story or factoid.. alas too many toys and other distractions just now - 31 and 137 *are* special, though, see flickr.com/photos/artivist/374133821/
      **100% now: just see en.wikipedia.org/wiki/12_(number)

      ;-)

      PS. The screenshot shows the first 10,729 digits of 2**37,156,667-1 ie 2 raised to the power 37,156,667 minus 1 and which is a prime number, the 46th so-called Mersenne number. Why 10,729, well only because that's what fits on my screen- oh and it's a prime number.

    7. vision revision 65 months ago | reply

      Are factoids like fractals?

    8. doylesaylor 65 months ago | reply

      I like the image. I suspected you were displaying a prime number. One thing I think of with huge numbers is the notation does not convey meaning. Roman numbers make it hard to do various simple arithmetical operations as an example. Primes are used for encryption so have national security values which I 'm sure you know. The money spent to make quantum computers is mainly to break prime numbers in encryption of other governments.

    9. NYCandre 65 months ago | reply

      @vision: factoids like fractals - ha, another research venue - what would fractal numbers be ?
      @doyle: ah - thanks for reminding us, prime numbers are serious (meaning $$$ endowed) business indeed these days.
      @nycandre (me): like a broken record: "why o why can't we use all this brainpower and these resources to make this planet a happier place for everybody?"

    10. klsanderson 48 months ago | reply

      Thanks for submitting to Textures for Layers. As per our Updated Policy, please check your cc license with our updated license policy

      If you'd like to resubmit your texture, please read the group post and make the necessary changes - you can just add the tag T4L-Agree to signify availability for group members.

      If you'd like to resubmit your texture, please read the group post and make the necessary changes.

      Thanks,
      Katherine

    11. klsanderson 48 months ago | reply

      perfect, thanks!

    12. NYCandre 48 months ago | reply

      @Katherine - you're welcome - I hope someone will find a way to tweak/ use it - should make for interesting background properly pp'ed

    13. Ron Rothbart 48 months ago | reply

      8602620672582672627568257206725868125828286258275!

    keyboard shortcuts: previous photo next photo L view in light box F favorite < scroll film strip left > scroll film strip right ? show all shortcuts