new icn messageflickr-free-ic3d pan white
1:72 Nanchang Qiangjiji-6/A-6B 'Kong Yun' (NATO: 'Fruitcase B'); aircraft ‘475’ of 21 Squadron, Bangladeshi Biman Bahini (Bangladesh Air Force/BAF), Bashar Air Base, 2010 (Whif/Kitbashing). | by Dizzyfugu
Back to photostream

1:72 Nanchang Qiangjiji-6/A-6B 'Kong Yun' (NATO: 'Fruitcase B'); aircraft ‘475’ of 21 Squadron, Bangladeshi Biman Bahini (Bangladesh Air Force/BAF), Bashar Air Base, 2010 (Whif/Kitbashing).


Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!


Some background:

The Q-6 program was initiated in the mid-1970s when, during the Battle of the Paracel Islands in 1974, the People's Liberation Army Air Force (PLAAF) and People's Liberation Army Naval Air Force (PLANAF) proved incapable of ground support missions. Due to the lack of modern avionics and ground infrastructure to support a modern air war, Chinese aircraft suffered navigation and other logistics problems that severely limited their performance. The first Chinese aircraft did not actually reach the islands until several hours after the battle was over.


In addition to the need to upgrade its logistics capability and infrastructure, China also decided that nothing-in-its-then-aircraft-inventory could fill the requirement for support missions in the South China Sea. Fighters such as the J-5, J-6, J-7, and J-8 lacked a ground attack capability and were hampered by short range. The only Chinese ground attack aircraft atr that time, the Nanchang Q-5 (a MiG-19 derivate with a solid nose, an internal weapon bay and lateral air intakes), was also short ranged and had a relatively low payload. China's bombers such as the Harbin H-5 and Xian H-6 were slow and lacked a sufficient self-defense capability. A new aircraft was therefore seen as desperately needed to fulfill a new naval strike mission in support of the People's Liberation Army Navy (PLAN).


Immediately after the battle, both the PLAAF and PLAN submitted their requirements for a new fighter bomber/ground attack aircraft to the 3rd Ministry of PRC. After extensive research, the 3rd Ministry decided that, based on the Chinese aeronautical industrial capability at the time, it was impossible to develop two separate airplanes at the same time. Instead, a decision was made to develop a single airplane when the prime requirements of the PLAAF and PLAN were similar, even though with different versions tailored to meet the different secondary needs of PLAAF and PLAN.


In June 1976 representatives from various aircraft factories were summoned to Beijing to discuss the project, and were instructed to come up with designs in the shortest possible time. Shenyang Aircraft Factory (later reorganized into Shenyang Aircraft Corporation) was the first to come up with a design, the JH-8 (FB-8), which was essentially a ground attack version of the large, twin-engined J-8II (F-8II) interceptor. Next came the Q-6, a new design from the Nanchang Aircraft Factory. The Xi'an Aircraft Factory (later reorganized into Xi'an Aircraft Industrial Corporation) was the last one to present a design, the Xian JH-7, also a new design.


Initially, the 3rd Ministry favored the JH-8, however because the design of the operational J-8II was still not completed the risk was considered to be too high, so it was eliminated. The projected development of JH-7 was too far out, and so the Q-6 was selected because it was believed to be the one that would be able for service the soonest.


The Q-6's distictive feature was its swing wing arrangement, and the project was China's first venture into this direction. Before the Q-6 program started, however, China had already obtained MiG-23BN and MiG-23MS aircraft from Egypt. A few downed F-111 were also provided to China by North Vietnam. Based on the research effort performed on these aircraft, it was suggested that the variable-sweep wing should be adopted for China's new ground attack aircraft.


The general designer of Nanchang Q-5, and the future academician of the Chinese Academy of Sciences (elected in 1995), Mr. Lu Xiaopeng, was named as the general designer of Q-6. Lu personally visited PLAAF and PLANAF numerous times to obtain their input, which was the base of the Tactical Technological Requirements of the Q-6 he was in charge of, and by February 1979, the general design of the attack aircraft was finalized, based on the initial requirement of the 3rd Ministry.


The original plan was to base the design of Q-6 on the MiG-23BN, the ground attack version of MiG-23. However, both PLAAF and PLAN required a true dogfight capability for self-defense. Due to the need of dogfight capability, a radar was needed, and the ground attack version of the Soviet fighter had no radar. As a result, the plan was changed to base the design on the MiG-23MS instead. But this was not a true solution: Studies revealed that in order to successfully perform the required missions for PLAAF and PLANAF, ground attack radar, as well as terrain-following radar, were needed, too. And for the intended dogfight capability, the RP-22 Sapfir-21 radar (NATO reporting name Jay Bird) of the MiG-23MS lacked the BVR capability.


Facing this technological lack the decision was made to use avionics reverse-engineered from the F-111 to makeup the MiG-23 shortcomings. But as with other technological features adopted for the Q-6, they were proven to be way too ambitious for the Chinese industrial, scientific and technological capability at the time, which resulted in prolonged development.


Problems did not stop, the airframe itself proved to be troublesome, too. Originally the design was based on the MiG-23MS, and was initially thought to be better than the MiG-23BN, because it provided more room in the nosecone to house the radar.

However, the Chinese microelectronic industry could not provide the solid state electronics needed to miniaturize the intended radar, and as a result, the size of the fuselage had theoretically to be increased from the size of the MiG-23 to that of the Su-24 to fit an appropriate radar dish with the technolgy available at that time. Research furthermore revealed that the side-intakes of the MiG-23 design were not sufficient enough to meet the required dogfight capability, so the side-intakes arrangement was changed into a single chin-intake instead, and the Q-6 is claimed to be the first Chinese aircraft to have a chin-mounted intake.


The engine itself was also a problem, since China did not possess a powerful jet fighter engine that would match the intended performance profile of the Q-6. At first there were plans to use 122.4 kN thrust of a WS-6 engine (which was used in the H-6/Tu-16 bomber!), but these were not suited for a fighter and simply too large. To match the targets of an aircraft weight of 14.500 kg, the biggest load of bombs of 4.500 kilograms and a combat radius of 900 km, the Q-6 was finally outfitted with the Wopen WS-9 afterburning turbofan - a license-built Rolls Royce RB.168 Spey Mk. 202 with 91.3 kN of thrust.


Chinese considered the greatest achievement of the Q-6 in its fly-by-wire (FBW) control of the variable-sweep wings, both were the first of its kind in China. The original goal of reverse-engineering the FBW of the F-111 proved to be way too ambitious and had to be abandoned, so a much simpler version was adopted. The triplex analog FBW of the Q-6 was effectively just slightly more advanced than the most rudimentary FBW in that the mechanical servo valves were replaced with electrical servo valves, operated by electronic controllers. But contrary to the most rudimentary FBW, where hydraulic actuators still existed, the hydraulic actuators are replaced by electrical actuators on the Q-6. Anyway, this system proved to be the major obstacle in the hardware development of the Q-6 and it took nine years to complete (1980–1988), under the personal leadership of Mr. Lu Xiaopeng.


In 1988, three prototypes were built: one for static test, one for avionics tests on the ground, and one for the variable sweep wing research. The serial aircraft for PLAAF and PLANAF would have been separate variants, called Q-6A and Q-6B, which are believed to be offered for export now (see below).


Although hailed as a technological breakthrough for the Chinese aviation and providing superior performance to fixed-wing designs (esp. the outdated Q-5), the Chinese system was more than 12% heavier than the simple mechanical-hydraulic controlled variable-sweep wing of the benchmark MiG-23, and the Q-6 avionics were still far from being up-to-date.

Once identified as an indigenous aircraft (the Q-6 was at first deemed to be a variant or straight copy of the MiG-23/27, and therefore premilinarily coded 'Flogger L'), NATO alloted the Code 'Fruitcase' to it, with suffixes for the various export variants (see below).


It was not before 1990 that the aircraft was completed and (theoretically) ready for service – but at that time, technology and military strategy had already changed, and China had been developing the more capable (but much bigger) twin-engined Xian JH-7 fighter bomber for PLAAF and PLANAF. But it would still take some years until the JH-7A would enter service with the PLANAF: in early 2004, and with the PLAAF by the end of the year.


For China, the most important factor which prevented the Q-6 introduction into PLAAF and PLANAF service, was the 'discovery' of stealth features on the battlefield: variable-sweep wing would enlarge the aircraft's radar cross section multiple times and thus making it impossible to survive on the modern battlefield, because it would be much more likely to be detected and shot down.


Anyway, internal politics did not stop China from offering the now completed airframe on the export market as A-6 'Kong Yun' ("Cloud"), as a more capable successor to the Nanchang A-5 (the export version of the MiG-19-based Q-5). From 1992 onwards, several former A-5 users bought the aircraft as A-6 multi-role fighters. It is assumed that these correspond to the Q-6's development lines for PLAAAF an PLANAF.


Current users are the Bangladeshi Air Force (8× A-6B), Myanmar Air Force (20× A-6C), Sri Lanka (11× A-6B) Korean People's Air Force (probably less than 50x A-6A) and the Sudanese Air Force (A total of about 20, 3–11 of them servicable, probably all A-6A).


A-6A ('Fruitcase A'):

The first version and despite being marketed as a "multi-role combat aircraft" a very simple variant with a small radome, probably containing a Type 226 pulse-Doppler radar (a Chinese copy of the GEC-Marconi Skyranger).


A-6B ('Fruitcase B'):

Similar in apperance to the A-6A with a bigger radome. This variant is equipped with a Chinese KLJ-6E pulse-Doppler radar (A Chinese copy of the Italian Pointer-2500 radar, the same as featured on the Chinese Q-5M Fantan attack aircraft), which gives all weather attack capability. These aircraft are also fitted with a HUD, a GPS receiver/inertial navigation system, a 360° radar warning system, a tactical radio navigation system and chaff/flare dispensers on the rear fuselage.

The Sri Lanka aircraft have been seen carrying an external FLIR pod on one of the underfuselage pylons, while the Bangladeshi Air Force aircraft exclusively feature a small fairing under the nose which is believed to contain a LR/MTS, allowing the deployment of PGM.


A-6C ('Fruitcase C'):

Dedicated ground attack variant with a solid, more slender nose and full PGM capability. The nose features a fairing with windows for an ALR-1 laser rangefinder/marked target seeker (LR/MTS) in a small ball turret, and possibly LLLTV/FLIR. This optical system offers day/night attack capability. Like the A-6B, these aircraft feature HUD, GPS, tactical radio and optional flare dispensers.



General characteristics:

Crew: 1

Length: 56 ft 1 in (17.10 m)

Wingspan: 47 ft 2 in (14.4m) at 16°, 28 ft 6 in (8,7m) at 72°

Height: 15 ft 9.5 in (4.82 m)

Empty weight: 16.520 lb (7.500 kg)

Loaded weight: 28.370 lb (12.880 kg)

Max. take-off weight: 32.820 lb (14.900 kg)



1× Xian WS-9 Qin Ling afterburning turbofan (a license-built Rolls Royce RB.168 Spey Mk. 202), rated at 54,6 kN (5.562kp) dry and at 91,3KN (9.305kp) at full afterburner



Maximum speed: Mach 1.2 at low altitude and in clean configuration, subsonic with external ordnance; 1.055mph (1.700 km/h) at height and in clean configuration

Combat radius: 485 nmi (560 mi, 900 km)

Service ceiling: 49.180 ft (15.000 m)



2× Type 23-III twin-barreled 23mm cannons in the wing roots with 200 RPG

7× Hardpoints (three under the fuselage, one under each fixed wing root and the mobile outer wings) for a maximum external ordnance of 10.000 lbs (4.540kg), including guided and unguided bombs, missiles, napalm tanks or 800l drop tanks; the two hardpoints under the outer wings are fixed and can only be used when the wings are kept in the most forward position (they are normally only used for drop tanks in ferry configuration).




The kit and its assembly:

This is a whif, but the Nanchang Q-6 was actually developed until 1989 – even though it never entered any service. It was over-ambitious and a dead end, overtaken by technological advances and the fact that Chinese development used to take decades rather than years.


Anyway, the Q-6 actually looked as if someone had glued the nose and air intake of a F-16 onto a MiG-23/27 fuselage - weird, but cool, so why not try this at home?


Like many kitbashing things, what sounds simple turned out to be a bit tricky in detail, even though the surgery was finally easier than expected. The model basis is pretty simple: I took an Academy MiG-27, sawed off the fuselage in the wing roots area (about 1cm, the cockpit section is an extra fuselage section), and did the same with an Italeri F-16 nose section, right behind the cockpit, where the front wheel well ends. The top insert for the single seater was left a bit longer, so that it would overlap with the MiG-23/27 spine.

When you fit these parts together, height is almost perfect, even the wing root/LERX angles match, but there are gaps left on the flanks where the original MiG-27 air intakes would be. These have to be covered, what creates lines reminiscent of the respective area on a MRCA Tornado. Furthermore, the spine behind the cockpit has to be sculpted, too.


Furthermore, the wing root levels of the MiG-23/27 and the F-16 did not match - they have a difference in height of about 4mm on the model, and this was the biggest challenge.

In order to compensate for this problem on my model, any LERX sign was removed from the F-16 nose. Inside of the F-16 section, a column was added that supports the rear upper half of the front fuselage, since the flanks had to go almost completely.

On the outside, the necessary intersections/extensions sculpted new with 2C putty, extending the MiG-23/27 lines forward. The final surface finish was done with NC putty. This major surgery was less complicated than expected - lots of work, though, but feasible.


The new front section with its blended fuselage/LERX area around the cockpit reminds surprisingly much of the MiG-29? As a side note: when you look at CG simulations of this aircraft, this area is a frequent field of trial and error. You find unconclusive, if not impossible designs.


Other changes include a less modern canopy from a MiG-21 (I think it comes from an Academy MiG-21F kit), which was more tricky to fit onto the original F-16 canopy than the LERX stuff. The F-16 canopy looked just too modern for my taste. An old Airfix pilot figure was added, too.


Another new feature is a new jet pipe, a J-79 nozzle from an Italeri Kfir that fits perfectly into the rear fuselage, and the fin. The latter was taken as a leftover part from my recent CF-151A project and comes from a 1:144 scale Tu-22M bomber (Dragon). It's higher, but less deep, and I thought that a slightly different shape and more area would be suitable for an attack aircraft. For the same reason the single, foldable stabilizer fin under the rear fuselage was replaced by two fixed strakes (from the F-16). Small details, but they change the look and make the aircraft appear more simple.


The landing gear was taken from the MiG-27, the front wheel strut had to be slightly shortened due to the reduced wheelbase on the Q-6.


The ordnance was puzzled together – according to current BAF weapons in use. I went for unguided missiles (taken from the Academy MiG-27 donation kit) and some 100kg iron bombs, leftover from a Trumpeter Il-28 bomber kit. These were arranged under the wing roots on improvised tandem MERs.


I did not even try to engrave new panel lines on the new front section - actually, almost the whole upper surface is featureless since it was made with putty. But bot 2C and NC putty are pretty touchy to drilling or engraving (as the rather fruitless attempt to drill open cavities for the two guns proved...), so I decided to just use paint effects.



Painting and markings:

I had been wanting to build a Bangladeshi Air Force aircraft for quite a long time, and the Q-6 was finally a great opportunity. As a ground attack aircraft, the livery was to reflect that role, and among modern BAF aircraft I found C-130 transporters carrying a wrap-around ‘Lizard’/’European One’ scheme, in the traditional tones of FS34102, FS34097 and FS 36081 (Humbrol 117, 149 and 32). Maybe the BAF C-130s are ex USAF aircraft? It seems to be common BAF practice to keep former users' liveries and even bort numbers! Anyway, I find the Lizard cammo on a swing wing aircraft like this rather disturbing, but overall the whole thing looks pretty cool, probably also because of the exotic roundels.


Another option would have been a two-tone green camouflage (seen on BAF An-32 transports) or a three-tone pattern of pale sand, dark brown and dark green with light blue undersides, seen on BAF A-5 fighters. The garish, blue livery of BAF MiG-29s, as well as the blue and grey patterns on BAF F-7 fighters, were ruled out, since they’d rather suggest an air superiority role.


The camouflage pattern is based on USAF A-10 aircraft, and the aircraft’s upper sides were thoroughly weathered with a black ink wash and dry-brushing in lighter shades of the basic tones. After all, my kit is to represent a Q-6 after more than 15 years of service, so that the grey would become much lighter, the dark green get a greyish-blue hue and the light green tone adapt an almost olive drab look. As a result, the aircraft does not look too dark and murky, and the missile ordnance does not stand out too much.


The roundels were improvised – Bangladeshi aircraft kits/decals are rare. AFAIK, only one 1:72 Fujimi MiG-21 offers a BAF markings option, otherwise I could not find anything else, even among aftermarket offerings. Scratching is more fun, though, so “my” markings are actually Pakistani roundels (from a TL Modellbau aftermarket sheet) with red decal discs covering the original white central disc.

The flag on the fin was cut from generic green decal sheet, the red disc was punched out from red decal sheet, just like the roundel additions. Straightforward – and highly effective! Other markings were puzzled together from the scrap box, since the Q-6 never got beyond prototype stage, anything was possible concerning stencils etc.


The bort numbers are guesstimates - typically, BAF (and also PAF) carry a full registration on the tail fin and only a three-digit code on the nose. Squadron emblems are only small and carried either on the nose or the fin, so the model is rather simple in appearance.


The cockpit interior was painted in "Russian Interior Blue-Green" (Testors 2135, a stuff also in use in China, as far as I can tell), the landing gear and its wells were kept in Aluminum (Humbrol 56). The air intake was painted in light grey from the inside, the radome became black.

5 faves
Taken on January 8, 2004